
Constrained Language Learning Techniques

Jonathan Bown

MSCS/Fall 2022

Case Studies in Machine Learning

The University of Texas at Austin

ABSTRACT

Feature engineering, dimensionality reduction, cross validation, and ensemble methods with

NLP. The ‘Feedback Prize’ is a popular style of competition on Kaggle. The basic idea of the

competition is to take a collection of student essays and score them according to various

categories. The rules with these competitions tend to be stricter than the average Kaggle

competition with restrictions on runtime, and internet usage. This presented an opportunity to

explore alternative methods of prediction that did not rely on an existing pre-trained large

language model as well as explore feature extraction techniques and compare performance. The

goal was purely academic in comparing a baseline model to a more sophisticated style to better

understand the value added of ensemble methods and feature engineering.

1. INTRODUCTION

	 In September of 2022 a new ‘Feedback Prize’ competition was launched on Kaggle [6].

The competition was hosted by Vanderbilt University and The Learning Agency Lab. The goal

was to “asses the language proficiency of 8-12th grade English language learners” [6]. The

competition host has a goal of obtaining a more automated way of evaluating student

performance in certain areas and have more information for improving student outcomes. The

rules were similar to previous competitions in that the notebook one submits has to run in less

than 9 hours, internet must be disabled, and the test dataset had to be constructed from scratch.

The competition did allow for external data and pre-trained models to be used. There have been

several recent competitions that have a similar structure. The latest competition also added the

code efficiency component to the submission evaluation so that those with the most efficient

code could still be competitive.

	 Exploration of features using standard NLP libraries in python was of the most interest.

Much research has been done to develop open source libraries that make more complicated

features like ‘subjectivity’ or ‘sentiment’ more accessible [1]. Would these features have any

bearing on the quality of the student essays? Would combining intuitive features with an

ensemble of models have reasonable performance in the competition? These are questions I

wanted to explore in depth without simply relying on a pre-trained model.

2. RESEARCH BACKGROUND or LITERATURE REVIEW

	 I have personally only been exposed to natural language processing techniques recently

and am only familiar with how to use large language models like BERT from repositories like

HuggingFace. Merging my previous experience with machine learning and natural language

required me to start with the basics, experiment with different approaches and evaluate

performance. The starting point was extracting basic information from text. This approach may

seem naive but the error of the chosen models seemed to be very low right out of the box.

	 Many approaches to this type of problem simply rely on features extracted from the

document-term matrix, term frequency matrix, count vectorizer, word2vec, or Latent Dirchlect

allocation (LDA) [9]. These are then fed into a more standard algorithm like XGBoost or

CatBoost to generate accurate predictions. LDA is a topic based model that is used to extract

meaning from a given corpora [9]. I did not see a relevance here for topic based modeling

although it would be interesting to see if there is any predictive power. Other more recent

approaches are using transformer based large language models although they usually always

mention the massive computational limitations to such a model [10]. This analysis is purely

focused on extracting features relevant to evaluating the quality of the essay in a way that works

within the competition and resource constraints.

	 Features from unstructured data like text can quickly enter large dimensions. Standard

features like bag of words, TF/IDF, count vectorizers, would quickly hinder performance.

Standard dimensionality reduction techniques like PCA are often employed both as an

exploratory tool as well as a way to enhance predictions by generating independent components

[8]. Many of these methods were explored as part of the analysis.

2

3. MATERIALS / DATA / SOURCES

	 Kaggle notebooks were used to develop and test competition submissions. Hardware was

also an experimental component of this competition. There was a tradeoff between using a GPU

and the standard setup on Kaggle notebooks. When the GPU on Kaggle notebooks is activated

the access to CPU power is reduced. The GPU was really helpful when training CatBoost and

XGBoost. The time to train was reduced by about 1/5. However, as more and more features were

added to the model the demand on the CPU became greater than the speedup obtained by the

GPU. Using the standard hardware allocation of 4 cores and 30 GB of RAM. Using the GPU

kept the runtime at about 7-8 hours which was really close to the cutoff of 9 hours. Using the

standard set up kept runtime to under 90 minutes.

	 The training data consisted of just under 4000 student essays with each essay receiving

six different scores. The score categories are cohesion, syntax, vocabulary, phraseology,

grammar, and conventions. The evaluation is performed by taking a separate set of test essays

and predicting these six scores for each essay. Obtaining a score for a given notebook is

performed first by running the entire notebook and then submitting the notebook for scoring. The

notebook is given an alternative test file to run through the model and produce a score on the

leaderboard. The notebook is a standard Jupyter notebook with a python kernel.

	 The test data included with the competition data only consists of three example essays

that are mostly used to test the construction of the training/test data so that it works properly with

the one that is inserted upon submission. The test data used throughout experimentation is just a

portion of the test set that is used as the validation data. The distribution of the target variables is

shown below. One major point to make from this is that the target variable is not continuous. The

target variables span a range of 1-5 but only by intervals of 0.5. This key observation is

important for producing accurate predictions. The expected output is discrete rather than

continuous. The management of this situation is referred to ‘rounding’ in the competition

submissions. It simply means to round up or down to the nearest half. Another point to make is

that the distributions of the target variables are all very similar except for vocabulary as can be

seen in Figure 1. Some of the features for the model were engineered specifically to capture the

vocabulary.

3

Figure 1. Distributions of Target Variables

	

4. METHODS

	 Initial derived features included basic information like ‘number of unique words’,

‘number of characters’, ‘number of capital letters’, ‘number of stop words’, etc. These features

were derived by applying lambda functions to the essay column in the training data.The

experimentation quickly evolved into many different features after inspecting a lot of the essays

one-by-one. There were several packages that already have many different methods for feature

extraction from text. Table 1 lists the libraries used for advanced features.

Table 1. Python NLP Libraries

Library Purpose Example Features Extracted

TextBlob Processing textual data Spelling, parts of speech

NLTK (Natural Language

Toolkit)

Standard NLP python library Sentiment, polarity

Sklearn Contains a breadth of feature

extraction techniques

TF-IDF, count vectorizer

Gensim NLP Semantic libraries Word2Vec

4

	

Table 2. Feature Descriptions

	 Dimensionality reduction techniques were explored to reduce the complexity of the

training data. Principal Components Analysis is a standard practice in NLP problems. There were

two main approaches to determine if the method was useful in improving predictions. The first

approach set the the desired explained variance ratio at various values to see how the number of

components was changing. The second approach used two main components to visualize the

loadings of each variable in a biplot shown in Figure 4. The training data used for PCA excluded

Feature Description

n_unique Number of unique words

n_capital Number of capital letters

n_punct Number of punctuation marks

n_unique_words_n_stop Number of unique words less stop words

n_n_words Number of non-words

noun_phrase_count Number of noun phrases

Pron Number of pronounds\

Verb Number of verbs

Sconj Subordinating conjunction

noun Number of nouns

Polarity Polarity sentiment score

Subjectivity Subjectivity sentiment score

spell_score Similarity to spell corrected essay

av_sent_length Average sentence length

max_sent_length Maximum length of sentences

min_sent_length Minimum length of sentences

med_sent_length Median length of sentences

std_sent_length Standard deviation of sentence length

num_sent Number of sentences

compound Compound sentiment score

negative Negative sentiment score

positive Positive sentiment score

neutral Neutrality sentiment score

char_len Number of characters

5

the TF_IDF, count vectorizer, and word2vec features. The idea here is that if the dimension of

the more explainable features can’t be reduced then it would only lose value by adding a much

larger space to the training data. The training data was first scaled using a standard scaler in

python. The desired ratio was first set to 85% and moved toward 99%.

	 Standard methods of normalization and standardization were employed during the model

development process. Standardization was the better choice for principle components and

normalization worked well for constructing the final training dataset used by the models. The

MinMaxScaler and StandardScaler were fit to each variable ensuring the values of each variable

weren’t skewing the predictions. Most variable distributions were evenly spread but there were a

few like the number of non-words that were potentially problematic as shown in Figure 2.

	

Figure 2. Feature distribution examples

The metric used to score submissions is MCRMSE or mean column-wise root mean squared

error.

	

where N is the number of scored ground truth target columns and y are actual vs. predicted

values. To evaluate model performance I am using RMSE because the overall evaluation metric

is the average RMSE for each column.

6

	 Stacking is an ensemble machine learning technique that takes the output of multiple

models and plugs them into a new dataset. Typically different models are used in each iteration

to produce output. In this case stacking was used with the four best performing models out of the

box on the training data. These models were applied to one of the columns and the best score was

recorded. Table 5 shows the results of models that were attempted. Since MCRMSE is the

evaluation metric for the competition the RMSE was used as the metric for comparing model

predictions on a single column. The results are shown in Table 5. The dataset that is constructed

by combining the output of the top four models is then fed into another regressor to create the

submission file. Table 3 below is an example output from these four combined models.

Table 3. Example output of model stack before final ensemble model

The thinking behind this is that the models by themselves actually do a pretty good job of

creating points that are in aggregate close to the actual results.

	 Once the stacked model is built and has produced predictions those predictions are then

used as a training dataset into the final model. The final model then makes six predictions for

each essay.

	 The approach to producing six different prediction columns was a decision between using

a standalone model for each column employing six different models or using a Multi-Output

Regressor that uses one single model and produces six different output variables. One popular

approach with multi-output regression problems is called the ‘direct’ approach. This approach

divides the regression into a separate problem for each target variable. This assumes that each

Cohesion Syntax Vocabulary Phraseology Grammar Conventions

2.723 3.42 3.59 2.92 3.04 2.98

3.34 3.24 3.61 3.39 3.19 3.22

3.44 3.29 3.59 3.42 3.2 3.27

2.68 3.11 3.17 2.41 2.72 2.52

7

target variable is independent. This may be a weak assumption given the following correlation

map between the target variables.

Figure 3. Target variable correlation heat map

The balance struck here is that all of the work to cross validation and model tuning is done on a

different variable for each model. The idea there is to prevent the stacked model to overfit onto

one variable and just rely on correlations on the others to perform.

	 After the best models with default parameters are tested and evaluated, cross-validation

was employed to optimize the parameter sets of each model to improve generalization. The

models that were optimized included LGBM, XGBoost, and CatBoost. The linear regression

model was excluded from this procedure. Common and influential parameter sets for these

models were researched and a parameter space was developed for each model. The more

influential the parameter on predictions such as ’n_estimators’ for LGBM were given more

possible values. The two approaches of randomized search and grid search were compared. Grid

search quickly ran out of working memory for small parameter spaces. Randomized search was

the more flexible option to iterate over larger spaces and also gave more flexibility on what

percentage of the overall space to sample over. Three-fold cross validation was used on all three

models with 100 iterations for each fold totaling 300 total fits. The target variables used for the

three-fold cross validation were grammar, vocabulary, and cohesion.

8

5. RESULTS

Figure 4. PCA Biplot

Figure 5. PCA Scatterplot

9

Table 4. PCA Number of Components

Table 5. Regression Model Performance

Components Explained Variance % # Components Explained Variance

3 50 4 55

5 60 6 65

9 75 14 85

23 95 30 99

Model Initial RMSE CV RMSE

Light GBM 0.0023 0.0021

Linear Regression 5.16E-06 -

XGBoost 0.023 0.0022

CatBoost 0.1954 0.0063

SGD 0.537 -

Kernel Ridge 0.533 -

Elastic Net 0.4388 -

Bayesian Ridge 0.347 -

GB Reg 0.401 -

SVR 0.433 -

Random Forest 0.475 -

10

Figure 6. Feature importance by target variable

11

Figure 7. Multi Output Regressor Feature Importance

Table 6. Final Notebook Scores

Description Public Score Private Score

Single linear regression model, subset of

engineers features (Baseline)

0.750361 0.738701

Stacked model w/ default parameters 0.550158 0.543464

Stacked model w/ rounding output 0.572441 0.561344

Stacked model w/ cv parameters 0.558848 0.553751

12

6. DISCUSSION & CONCLUSION

	 The best model scoring model turned out to be the default parameters of the stacked

model. The difference between my best score and the winners was about 0.12 in MCRMSE. This

was surprising given all the analysis that went into cross validation and model tuning. The

expected result was that expanding the feature set along with building the ensemble model

improved the model by about 20 basis points in MCRMSE. Another surprising result was that

rounding the model output to the nearest half reduced the score slightly. Expanding the feature

set was backed up by the PCA results. Table 4 shows why PCA was not employed in the final

model. To get 99% of the explained variance, 30 components are needed despite having 39

features in total.

	 The overall goal of this research project was to explore different approaches to rating

student essays using readily available nlp libraries. The approach of treating each target variable

as independent was probably too generous given the high correlation. The vast differences in

feature importances among the six different target variables supports the argument for building a

separate model for each target variable and curate the features to exclude those below a certain

threshold in the feature importance score. Clearly ‘vocabulary’ and ‘phraseology’ have better

performance with variables like ‘num_sent’ than ‘cohesion’. The cross validation and inclusion

of many features seemed to overfit to the training data and contribute to the lower scores on the

leaderboard. Using PCA exclusively on the more interpretable features could have also been a

limitation. Evaluating the potential reduction in complexity by using the principal components

on the TF/IDF features could have contributed to the success of the model. Despite ignoring

more popular methods like transformers or pre-trained models I am impressed with the

performance of some of the variables. I did not expect any of them to perform as well as they did

with certain target variables but the upside to using a model like this is very clear interpretability

for the user. Model interpretability and explainability to those who eventually employ them will

be crucial for competitions like this to continue to be popular and well funded.

	 I think there is a lot of potential with this approach to build a really fantastic model but it

would take some more time to determine which variables are best for each target variable and

which cross-validation approach would actual help generalization

13

REFERENCES

1. Introduction to entity extraction: What is it and how it works. MonkeyLearn Blog. (2020,

November 9). Retrieved December 3, 2022, from https://monkeylearn.com/blog/entity-

extraction/

2. Ma, E. (2018, November 17). Essential text correction process for NLP tasks. Medium.

Retrieved December 3, 2022, from https://towardsdatascience.com/essential-text-correction-

process-for-nlp-tasks-f731a025fcc3

3. Lass, D. (2019, September 4). NLP punctuation, lower-case and StopWords pre-processing.

Medium. Retrieved December 3, 2022, from https://medium.com/@LauraHKahn/nlp-

punctuation-lower-case-and-stopwords-pre-processing-d4888c4da940

4. How to practice word2vec for NLP using python. Built In. (n.d.). Retrieved December 3, 2022,

from https://builtin.com/machine-learning/nlp-word2vec-python

5. Wu, J. D. (2021, November 18). PCA - Implementation in Python - Damavis Blog. Damavis

Blog - Data - Machine Learning - Visualization. Retrieved December 3, 2022, from https://

blog.damavis.com/en/principal-component-analysis-implementation-in-python/

6. Feedback prize - english language learning. Kaggle. (n.d.). Retrieved December 5, 2022,

from https://www.kaggle.com/competitions/feedback-prize-english-language-learning

7. Brownlee, J. (2020, August 27). How to use StandardScaler and MinMaxScaler transforms in

Python. MachineLearningMastery.com. Retrieved December 3, 2022, from https://

machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/

8. Wambsganss, T., Engel, C., & Fromm, H. (2021). Improving explainability and accuracy

through feature engineering: A taxonomy of features in nlp-based machine learning. In Forty-

Second International Conference on Information Systems.

9. Gualberto, E. S., De Sousa, R. T., Thiago, P. D. B., Da Costa, J. P. C., & Duque, C. G. (2020).

From feature engineering and topics models to enhanced prediction rates in phishing

detection. Ieee Access, 8, 76368-76385.

14

10. Ormerod, C. M., Malhotra, A., & Jafari, A. (2021, February 25). Automated essay scoring

using efficient Transformer-based language models. arXiv.org. Retrieved December 3, 2022,

from https://arxiv.org/abs/2102.13136

15

https://arxiv.org/abs/2102.13136

