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Abstract. We propose semi–parametric tests to detect a change point in the struc-

ture or mean of sequences of independent random variables and time dependent pro-

cesses. The asymptotic distributions of the proposed statistics are derived under mod-

erate assumptions. We discuss the applicability of our method to test for parame-

ter changes to the most often used distributions and models, including autoregressive

moving average (ARMA) and autoregressive conditional heteroskedastic (ARCH). Our

simulations show that our tests have good size and power properties for independent

and dependent sequences of random variables. We apply the semi–parametric tests in

the attempt to date the occurrence of major declines during the Great Recession and

several other major financial events. We discuss limitations with these approaches as

well as possibilities for further research.

1



Contents

1. Introduction 3

2. Proposed Test for Change Points 1

3. Brownian Motion and Boundary Functions 6

4. Simulation of Critical Values 8

5. Test Size for Independent Identically Distributed Random Varianbles using

ΘM,T 18

6. Dependent Sequences and Long-Run Variance 23

7. Test Size for Dependent Random Variables using ΘM,T 27

8. Visualization of Sequential Stopping Times 32

9. Applications 33

10. Conclusion 46

11. Acknowledgements 46

Appendices 47

Appendix A. Stock Return Data 47

Appendix B. Proofs 55

Appendix C. Reference for Generalized Autoregressive (GARCH) Models 62

References 65

2



1. Introduction

In the real world, data does not often maintain the same statistical properties over time
or across samples. One purpose of investigating changes in the statistical properties
is to find when the change actually occurred. This can be a challenge when seeking a
change point in real-time or possibly in the future because the amount of data avail-
able becomes more limited. This leads to the question of how long must one wait or
how much data to collect to find an accurate change point and perhaps exit or enter a
financial asset based on this information. This question can be examined with a wide
variety of tools and methods with everything from prediction to parameter estimation
but can also be burdened with assumptions. The test we propose is an effort to simplify
the assumptions needed to perform a change point test in addition to cutting down on
the information that is required to find an adequate change point. The semi-parametric
test is also flexible to apply weak or strong parametric assumptions about future exam-
ples.

This paper is structured as follows. Section 2 introduces the semi–parametric test and
its properties. Section 3 shows our choice of boundary function used as part of the test
to achieve convergence and satisfy desired properties of the test. Section 4 provides de-
tails of the simulations that were performed to derive the critical values. Section 5 pro-
vides examples of the parametric approach for which the assumptions of our theoretical
framework are satisfied. In Section 6, we assess the finite sample performances of the
proposed tests on dependent sequences and provide an estimator used for the parame-
ter in the test statistic in parametric and non-parametric settings. Section 8 provides an
empirical application in the context of stock returns for various stocks that have histor-
ically exhibited a severe change in asset price or asset return. The R code utilized for
this project is located in a GitHub repository referenced by [4].
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2. Proposed Test for Change Points

We write the measurement error model as Xi = µi + ei for i ≥ 1, where Xi is the ith

observation and the errors ei are stationary with E[ei] = 0 for i ≥ 1. We have a training
sample of size M with a stable but unknown mean µi = µ for 1 ≤ i ≤ M . We are
interested in testing if a change at an unknown k∗ occurs when we continue sampling
data after the initial sample. We have the following model for the means

µi =

{
µ, M + 1 ≤ i ≤M + k∗,

µ+ ∆, i ≥M + k∗ + 1,

where ∆ 6= 0 and unkown. The total number of observations we collect after the train-
ing sample is T . The null hypothesis for this setting is given by

H0 : k∗ > T (µ1 = µ2 = ... = µM = µM+1 = ... = µM+T ),

i.e. there is no change in the mean during the observation period. The alternative hy-
pothesis is given by

HA : k∗ < T (µ1 = ... = µM = .. = µM+k∗ 6= µM+k∗+1 = ... = µM+T ),

i.e. there was a change in the mean and it occurred at data point k∗. We are interested
in a sequential procedure to get H0 against HA. Since our procedure will terminate at
time T after the training period, our method is a long end procedure. This model was
introduced by Aue and Horváth (2012) with a survey on sequential methods, and their
applications. Our procedure is based on estimating and comparing the mean of the ele-
ments of the test (current) sample to the mean of the training (historical) sample. After
we collected additional k + h observations, we compare the mean of XM+k, ..., XM+k+h

to the sample mean of the training sample. Usually, h is called the “rolling window” in
econometrics. Let

Zk =
∣∣XM −Xk,h

∣∣ ,
where

Xk,h =
1

h

M+k+h∑
i=M+k

Xi,(2.1)

and the stopping time will be defined as

τM = min {k < T − h : Zk > gα(h, k), T − h} .(2.2)

We are interested in detecting when the quantity Zk crosses a suitably chosen boundary
function gα(h, k). Note that (2.1) is the sample mean of the observations, XM+k, ..., XM+k+h.
This means that we collected already M + k + h observations after the training period
and only the last h are compared to XM . This method should be better than compar-
ing the sample mean of XM+1, ..., XM+k+h to the mean of the training sample. If the
change comes late, then several additional observations have been already collected with
the mean of the training sample. Hence a large number of observations after the time
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of change must be collected to overcome their effect in the sample mean of the observa-
tions collected after the training period. We require that

lim
M→∞

P(τM < T − h) = α,(2.3)

i.e. the probability of false alarm is α. This means that the probability of the type I
error is α for large M . Under the alternative hypothesis there is exactly one change. We
also require that we stop collecting further observations if there is a change in the data
and we wish to stop as soon as possible. We wish to have under the alternative that

lim
M→∞

P(τM < T − h) = 1,

i.e. we always detect the change with very large probability. We note that under the
null hypothesis and the assumed stationarity of the errors {ei, i ≥ 1}, the variance
of (2.1) does not depend on k nor on M . We choose c such that (2.3) holds under H0.
Throughout this project we use the notation

ξn = o(an) a.s. if lim
n→∞

|ξn|
an

= 0 a.s.,

ξn = O(an) a.s. if lim
n→∞

|ξn|
an

<∞ a.s.

Similarly,

ξn = o(an) in probability (ξn = oP(an))

means that

lim sup
n→∞

P(|ξn|/an ≥ ε) = 0 for all ε > 0

and

ξn = O(an) in probability (ξn = OP(an))

if

lim
K→∞

lim sup
n→∞

P(ξn/an ≥ K) = 0.

We write

ε ∼ N(0, 1)

to say that the random variable ε has a normal distribution with mean zero and vari-
ance one. We use the following assumption to arrive at our results.

Assumption 2.1. There are partial sums of stationary random variables {ei, i ≥ 1} and
Wiener processes {W1(u), u ≥ 0} and {W2(u), u ≥ 0} such that

M∑
i=1

ei = σW1(M) + o(M ε) a.s. for some 0 < ε < 1/2 as M →∞,(2.4)
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k+M∑
i=M+1

ei = σW2(k) + o(kε) a.s. for some 0 < ε < 1/2, as k →∞,(2.5)

and

{W1(s), 0 ≤ s ≤M} and {W2(t), 0 ≤ t <∞} are independent.(2.6)

These assumptions require that E|ei|1/ε < ∞. We note that in our calculations and in
the computation of the critical values with the boundary function gα(h, k) it is easier to
work with a continuing formulation of (2.5). According to Csörgő and Révész (1981) for
any Wiener process {W (u), u ≥ 0}

sup
k≤t≤k+1

|W (k)−W (t)|√
log(k)

<∞ a.s., as k →∞,(2.7)

and therefore (2.5) is equivalent with

t+M∑
i=M

ei = σW (t) + o(tε) a.s.(2.8)

We assume that {ei, i ≥ 1} is a stationary process, such as the ARMA(p, q), i.e.

et = δ1et−1 + ...+ δpet−p + εt + θ1εt−1 + ...+ θqεt−q −∞ < t <∞,(2.9)

where {εt,−∞ < t < ∞} are independent and identically distributed random variables
with E[ε0] = 0 and E|ε0|ν < ∞ for some ν > 2. It is shown in Shumway and Stoffer
(2017) that (2.9) has a stationary solution if and only if the roots of the polynomials
δ(z), θ(z) are outside of the unit circle. According to Khoshnevisan (2013), if E|ε0|ν <
∞, then

lim sup
k→∞

|εk|
k1/ν

= 0 a.s.(2.10)

The stationary solution can be written as

es =

∞∑
l=0

clεs−l,

where |cl| = o(δl) as l → ∞ with some 0 < δ < 1. Hence by Minkowski’s inequality we
have

(E|es|ν)1/ν =

(
E

∣∣∣∣∣
∞∑
l=0

clεs−l

∣∣∣∣∣
ν)1/ν

≤
∞∑
l=0

(E|clεs−l|)1/ν

≤
∞∑
l=0

|cl| (E|ε0|)1/l <∞.
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Since {ei, i ≥ 1} is a stationary sequence with E|e0|ν < ∞, using the Borel-Cantelli
lemmas as in Khoshnavishan (2013) we get along the lines of (2.10) that

lim sup
k→∞

|ek|
k1/ν

= 0 a.s.(2.11)

Now we take the sums of (2.9) and get

M∑
t=1

et = δ1

M∑
t=1

et−1 + ...+ δp

M∑
t=1

et−p +
M∑
t=1

et + θ1

M∑
t=1

εt−1 + · · ·+
M∑
t=1

et−q

= (δ1 + ...+ δp)
M∑
t=1

εt +R
(1)
M + (1 + θ1 + ...+ θq)

t=M∑
t=1

εt +R
(2)
M ,(2.12)

where

R
(1)
M = δ1(e0 − eM ) + · · ·+ δp [(e1−p + e2−p + · · ·+ e0)− (eM + eM−1 + · · ·+ eM + 1)] ,

and

R
(2)
M = θ1(e0 − eM ) + · · ·+ θq [(e1−p + e2−q + · · ·+ e0)− (eM + eM−1 + · · ·+ eM + 1)] .

It follows from (2.11) that

lim
M→∞

|R(1)
M |

M1/ν
= 0 a.s.

and (2.10) yields

lim sup
M→∞

|R(2)
M |

M1/ν
= 0 a.s.

Hence

M∑
t=1

et =
1 + θ1 + · · ·+ θq

1− (δ1 + · · ·+ δp)

M∑
t=1

εt + o(M1/ν) a.s., as M →∞.(2.13)

Using the Komlós-Major-Tusnády approximation (Csörgő and Révész (1981)) there is a
Wiener process {W1(u), u ≥ 0} such that

M∑
t=1

εt − (Var(ε0))
1/2W1(M) = o(M1/ν) a.s., as M →∞.

For some ν > 2. Hence (2.4) holds with

σ2 =

(
1 + θ1 + · · ·+ θq

1− (δ1 + · · ·+ δp)

)2

Var(ε0).(2.14)
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Similarly to (2.13) we can prove that

M+k∑
t=M+1

et =
1 + θ1 + · · ·+ θq

1− (δ1 + · · ·+ δp)

M+k∑
M+1

εt + o(k1/ν).

Hence (2.6) holds by the independence of
{∑M+k

i=1 εi, k ≥ 1
}

.

The approximation follows again from the Komlós-Major-Tusnády approximation. The
next result gives the distribution of τM under the null hypothesis. Let

gα(h, k) =
c1−ασ(h+ k)β

hβ+1/2
(2.15)

where β > 1/2 and c1−α is the upper quantile or critical value associated with the size
of the test.

Theorem 2.1. If Assumption 2.1 holds, h/M → 0, h/T → 0 as M,T → ∞, and
gα(h, k) is defined by (2.15), then

lim
M→∞

P (τM < T − h) = P

(
sup

0<u<∞

|W (u+ 1)−W (u)|
(u+ 1)β

≤ c1−α
)
,

where {W (u), u ≥ 0} is a Wiener process.

If HA holds and Assumption 2.1 is satisfied, then

Zk
|∆|

P−→ 1,

where ∆ denotes the size of the change. So if

lim sup
h→∞

k∗

h
<∞,(2.16)

then

Zk
gα(h, k∗)

P−→∞,(2.17)

assuming that

h1/2|∆| → ∞.(2.18)

Under (2.16) we have that

lim inf
h→∞

h−1/2

gα(h, k∗)
> 0

and therefore (2.18) implies (2.17). If

lim
h→∞

k∗

h
=∞
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then

h∗

k∗ + h
=∞

so if

|∆|h1/2
(
h

k∗

)β
→∞(2.19)

then (2.17) holds again. Equation 2.17 yields under HA that

lim
M→∞

P(τM < T − h) = 1,(2.20)

i.e. we detect the change with probability converging to 1. To achieve this we need to
collect only k∗+h additional observations. This indicates that the size of the change can
be small and our procedure will detect it with high probability. If β is small in (2.19),
then the detectable change can also be small. The sequential procedure can be com-
pared to the fixed sample size statistic

ΘM,T = max
1≤k≤T−h

∣∣∣∣∣XM −
1

h

k+h∑
i=k

Xi

∣∣∣∣∣
/

gα(h, k).(2.21)

Theorem 2.2. Let Xi, 1 ≤ i ≤M , be i.i.d. random variables, also fix an h > 0 such that h/M →
0 and h/T → 0 as M,T →∞, and let gα(h, k) be defined properly. Then

ΘM,T
D−→ max

0<u<∞

|W (u+ 1)−W (u)|
(u+ 1)β

for β > 1/2 and W (t) is a Wiener process, or standard Brownian motion.

Note here that
D−→ refers to weak convergence or convergence in distribution. The test

statistic ΘM,T requires the collection of additional T observations after the training pe-
riod. The sequential procedure only has T observations under the H0 while only k∗ + h
under the alternative. This gives a sense that the sequential procedure is more efficient
and less complex under the alternative. Under H0 these procedures are equivalent.

Lemma 2.1. We assume that the assumptions of Theorem 2.1 are satisfied. Then,

P(τM < T − h)
D−→ P

(
max

0<u<∞

|W (u+ 1)−W (u)|
(u+ 1)β

≥ c1−α
)

= α,

where c1−α is the critical value chosen for the test of size α.

3. Brownian Motion and Boundary Functions

In this section, the finite sample performance of the monitoring procedure is evaluated.
We make use of standard Brownian motion to achieve the simulation results of the criti-
cal values as well as the size of the test for ΘM,T . We make heavy use of standard Brow-
nian motion. We breifly introduce the basic definition of a Wiener process or Brownian
motion according to Wiener (1923) are as follows, Brownian motion {W (t)}t≥0 is a ran-
dom function of t (= “time”) such that:
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(1) P(W0 = 0) = 1.

(2) W has independent increments: for every t > 0, the future increments W (t +
u)−W (t), u ≥ 0 are independent of the past values {W (s), s < t}.

(3) W has Gaussian increments: W (t + u) −W (t) is normally distributed with zero
mean and variance u.

(4) W has continuous paths: with probability 1,W (t) is continuous in t.

The Wiener process is sometimes called a standard Brownian motion. By definition
E[W (t)] = 0 and Var(W (t)) = E[W (t)2] − E[W (t)]2 = E[W (t)2] − 0 = E[W (t)2] = t
(DasGupta, 2008). In order to determine the underlying distribution of the limit of the
statistic ΘM,T we need the following theorems about the increment limits of standard
Brownian motion. We have the following from Csörgő and Révész (1981),

Theorem 3.1. If W (t) is a Wiener process then

lim sup
t→∞

|W (t)|√
2t log(log(t))

= 1 a.s.

Theorem 3.2. If W (t) is a Wiener process then

lim sup
t→∞

|W (t)|√
2t log(1/t)

= 1 a.s.

Theorem 3.3. If W (t) is a Wiener process and Γ(y) = W (y + 1)−W (y) then

lim sup
y→∞

|Γ(y)|√
2 log(y)

= 1 a.s.

Theorem 3.3 in addition to Theorem 2.1 lead us to the distribution of ΘM,T and then
to the selection of the suitable boundary function. In particular, Theorem 3.3 gives us a
baseline for convergence. If we can further bound the denominator below by

√
2 log(y)

and have the selected quantity be a monotone increasing function of y, then we will
have convergence to zero, instead of one, in the limit of the supremum. This is achieved
by using (1 + u)β in the denominator of (4.1). The proof of Theorem 3.1 is simple so we
provide it in Appendix B.

The limiting distribution of the test statistic depends on the choice of the constant, β.
This constant is a small number chosen before the test that allows proper convergence
of the test statistic. The value of β was evaluated based on the initial simulations then
set as a constant for the remainder of examples and applications. The critical values for
ΘM,T are found initially under different values of β in order to compare the test size
and determine the best value. We also evaluated how the rolling window should de-
pend on the amount of information we are using in the test sample of size T . The in-
tuition being that as T increases, the window h should not be as refined as when T is
small which is more formally introduced in Section 4. First, we introduce the definitions
of the boundary function and the resulting simulations for independent identically dis-
tributed random variables.
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Definition 3.1. Let Xi, 0 ≤ i ≤ M be i.i.d. random variables with mean 0 and variance
1. If assumption (2.4) is met, fix an h > 0 such that h/M → 0 and h/T → 0, then the
boundary function is given by

g(h, k) =
(h+ k)β

hβ+1/2

for β > 1/2 and k ∈ Z+.

Note that in the above definition we did not include the subscript α because the defini-
tion does not include the critical value in the function g(·). We want to make the dis-
tinction that this is the basic form of the boundary function in general for variance one
random variables. Including the subscript α indicates the inclusion of the critical value
c1−α in the numerator of the function g(·) and merely a matter of notation for the anal-
ysis.

Definition 3.2. Let Xi, 0 ≤ i ≤ M be stationary random variables with mean 0 and
unknown long-run variance σ2. If assumption (2.4) is met, fix an h = h(T ) > 0 such
that h/M → 0 and h/T → 0 as M,T →∞ then the boundary function is given by

g(h, k) =
σ̂(h+ k)β

hβ+1/2

for β > 1/2 and k ∈ Z+.

For the i.i.d. boundary function, σ̂ =
√
S2, where S2 =

n∑
i=1

(Xi − X)2/(n − 1). For

dependent stationary random variables, σ̂ is the non-parametric estimator of the long-
run variance.

4. Simulation of Critical Values

The random variable ΘM,T is a maximum on the positive half line. Of course numeri-
cally we cannot take infinitely many values so we compute

Θ(u) = sup
0<t≤u

|W (t+ 1)−W (t)|
(t+ 1)β

.(4.1)

Since

sup
u≤t<∞

|W (t+ 1)−W (t)|
(t+ 1)β

→ 0 a.s.,

Θ(u) will change little after some u. Let ε1, ε2, ... be a sequence of independent, identi-
cally distributed random variables with mean 0 and variance 1. For each n ≥ 1 define a
continuous-time stochastic process {Wn(t)}t≥0 by

Wn(t) =
1√
n

∑
1≤j≤bntc

εi, 0 ≤ t ≤ 1.(4.2)

This is a form of the one-dimensional random walk and is a random step function with
jumps of size ±1/

√
n at times k/n, where k ∈ Z+. Since the random variables εj are
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independent, the increments of Wn(t) are independent. In addition, for large N the dis-
tribution of Wn(t + s) −Wn(s) is close to the N(0, t) distribution by the Central Limit
Theorem. Thus as n → ∞, the distribution of the random function Wn(t) approaches
that of standard Brownian motion. This property of the random walk was used in the
simulation of the test statistic.

Using the details above, we constructed a way to simulate the necessary quantity in
which Θ(u) converges to, given by Theorem 2.1. Primarily we know that we can’t let
u go off to infinity during the simulation. For each simulation of the critical values we
needed to select an endpoint u and show that the distribution of this quantity converges
as if u→∞. To do this we will select u ∈ {1, 2, 3, 4, 5, 6} in order to show that the criti-
cal values converge very quickly. We also need t to take on very small increments of val-
ues as if it were on a continuous interval [0, u]. Thus we will use a quantity dt which will
be the frequency of the sequence generated on [0, u] which gives an interval of length
u/dt. One other technicality is that the corresponding Brownian motion is defined on
the interval [0, u+ 1]. This ensured that Θ(u) was well-defined.

In the simulations of Brownian motion, we made sure that Definition 4.2 and the prop-

erties above are satisfied. We started by letting E = (ε1, ε1 + ε2, ...,
∑bntc

j=1 εj). E is a vec-

tor that when simulated contains the cumulative sum terms of W (t) for every t on the
interval [0, u]. Let N = b(u + 1)/dtc, this is the number of elements in E. The last part
to determine was the quantity n in (4.2). For convenience of translating these simula-
tions in R, we had the random walk to go from index 1 to bntc. We have three simple
equations that must hold in order to solve for n, namely

t = dt s.t. bn(dt)c = 1,(4.3)

t = u s.t. bn(u)c =
u

dt
,(4.4)

t = u+ 1 s.t. bn(u+ 1)c =
u+ 1

dt
.(4.5)

When we evaluated (4.1), the numerator was the difference between the Brownian mo-
tion vector at index u/dt and (u+1)/dt. We needed these conditions in order to produce
the correct indices as these differences were evaluated. I show here that n = N/(u + 1)
satisfies all of these desired conditions. Recall that

N =

⌊
u+ 1

dt

⌋
,

thus

n =
N

u+ 1
=
bu+1
dt c

u+ 1
,

and u+ 1 is an integer so we can extend the floor function as⌊
u+ 1

dt(u+ 1)

⌋
=

⌊
1

dt

⌋
.
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In the simulations performed, we chose dt = 0.001 such that 1/dt = 1000. Thus when
n = 1/dt = 1000 we had immediately that (4.3), (4.4), and (4.5) hold. The plots and
tables below begin by showing the convergence of the critical values of (4.1). These
values were found by evaluating the quantiles of the Θ(u) on intervals of specified end-
point. Once the quantiles (critical values) had been found to converge, we checked that
the simulated size of the test is close to the chosen size under the null hypothesis. This
involved picking an M and a T as in (2.21) in order to generate the training and test
sets. We simulate this for i.i.d. random samples as well as dependent sequences. After
the test size was evaluated, we simulated the sequential procedure to evaluate stopping
times. For all these tests we compared among values of β ∈ {1, 2, 3, 4} to find the best
value that allowed the simulated size of the test to be close to the desired size of the
test. Recall we claimed that the smaller the values of β are better able to detect smaller
changes in the mean. The only requirement on β is that it is chosen to be greater than
1/2.

Previous to the results shown for the size of the test, there was a lot of testing of what
would be the ideal rolling window, h. Initially this was chosen to be a fixed number
such as h = 2. However, the simulations showed a lot of variability in the size of the test
and in the overall sequential procedure that were not satisfactory. There was also no
theoretical justification for h being a constant. If h is a constant, then there is nowhere
in ΘM,T that actually depends on the number of test examples, T . We have the train-
ing sample size, M , contained in the calculation of the sample mean and sample vari-
ance. We also will have more terms to take the maximum over as T grows larger. But
it seems natural to include T in the boundary function in order to scale the differences
by some function of how much information we have in the test sample which similar to
other basic hypothesis tests. There should also be some flexibility of the rolling window
for calculating the means at each increment of k depending on if there is a little or large
amount of examples. This led to the idea to let h = bT 1/2c. This fits the assumptions
necessary for Theorem 2.2. We have that

h = bT 1/2c → ∞ as T →∞,

bT 1/2c/M → 0 as M,T →∞,

bT 1/2c/T → 0 as T →∞.

Throughout the simulations and applications, the boundary function is implemented as

g(h, k) = g(T 1/2, k) =
σ̂(T 1/2 + k)β

T β/2+1/4
,(4.6)

and the critical values used are shown in Table 4.2. The estimator σ̂ is interchangeable
with σ in (4.6) and unless otherwise specified, the simulations use σ̂. The above for-
mulation of the boundary function was a key factor in obtaining consistent results for
the size of the test across all the models examined. Other attempts were made at func-
tions of perhaps M or other functions of T , but the most consistent results were a con-
sequence of (4.6).

10



0 20 40 60 80

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Boundary Function When T = 100 ,  β = 1

k

g(
h,

k)

0 20 40 60 80

0
5

10
15

20
25

30

Boundary Function When T = 100 ,  β = 2

k

g(
h,

k)

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Boundary Function When T = 100 ,  β = 3

k

g(
h,

k)

0 20 40 60 80

0
50

0
10

00
15

00
20

00
25

00
30

00

Boundary Function When T = 100 ,  β = 4

k

g(
h,

k)

Figure 4.1. Boundary function for different values of β

As part of the simulations of test size, we also evaluated the consistency of this depen-
dence on T for the value of h. To test h = bT 1/2c we chose four scenarios for M and
T . Two scenarios let M equal T for small and large values. Two scenarios give a clear
imbalance between M and T . These scenarios are a way of creating a large imbalance
between the test and training sample to see if this imbalance is reflected in the empirical
size of the test. However, the resulting change in the size of the test is negligible as can
be seen in the simulation results. The most significant factor in the size of the test was
the value chosen for β. All simulations were carried out using the R software, and each
example was simulated a minimum of 5,000 times. The figures that follow are plots of
the density and distribution functions of Θ(u) for several values of u.
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Figure 4.2. Simulated density and distribution function of Θ(1)
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Figure 4.3. Simulated density and distribution function of Θ(2)
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Figure 4.4. Simulated density and distribution function of Θ(3)
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Figure 4.5. Simulated density and distribution function of Θ(4)
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Figure 4.6. Simulated density and distribution function of Θ(5)
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Figure 4.7. Simulated density and distribution function of Θ(6)
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Table 4.1. Upper quantiles (critical values) for Θ(u)

β u c90% c95% c99%
1 1 1.945051 2.199489 2.731077

2 1.981252 2.266893 2.809544
3 1.974247 2.275988 2.817490
4 1.985353 2.291374 2.900883
5 1.976551 2.231797 2.748361
6 1.961971 2.236345 2.725577
∞ 1.961971 2.236345 2.725577

2 1 1.814392 2.095318 2.624788
2 1.840018 2.145515 2.721245
3 1.839820 2.150535 2.729268
4 1.846423 2.148506 2.731067
5 1.850786 2.128663 2.635953
6 1.813968 2.105014 2.625778
∞ 1.813968 2.105014 2.625778

3 1 1.758939 2.043119 2.568253
2 1.785773 2.083754 2.696876
3 1.775451 2.080368 2.707124
4 1.790178 2.070710 2.685414
5 1.775937 2.073220 2.585892
6 1.756301 2.046612 2.586148
∞ 1.756301 2.046612 2.586148

4 1 1.724598 2.022846 2.552377
2 1.749547 2.061546 2.675776
3 1.743404 2.045160 2.683522
4 1.747410 2.041674 2.632820
5 1.748103 2.046688 2.571845
6 1.735013 2.010628 2.568760
∞ 1.735013 2.010628 2.568760

Table 4.2. Asymptotic critical values chosen for Θ with different values of β

Critical Values

β c90% c95% c99%
1 1.961971 2.236345 2.725577
2 1.813968 2.105014 2.625778
3 1.756301 2.046612 2.586148
4 1.735013 2.010628 2.568760

5. Test Size for Independent Identically Distributed Random Varianbles
using ΘM,T

In the following simulations, σ is estimated to be the square root of the sample variance.
The variables are generated independently and h = bT 1/2c which satisfies the assump-
tions needed for definitions (3.1) and (3.2). In all these simulations we are seeking the
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empirical size of the test to be close to the selected value of α. We define α as

α = lim
M→∞

PH0 (ΘM,T ≥ c1−α) .

The random variables {Xi, 0 ≤ i ≤ M + T} are generated from the distribution listed
in the table title.

Table 5.1. Empirical performance of test size, where Xi ∼ N(0, 1)

c.90 c.95 c.99
M T β P(τM < T − h) P(ΘM,T > c) P(τM < T − h) P(ΘM,T > c) P(τM < T − h) P(ΘM,T > c)
100 100 1 0.0718 0.0718 0.0344 0.0344 0.0066 0.0066

2 0.0514 0.514 0.023 0.023 0.0032 0.0032
3 0.0352 0.0352 0.0124 0.0124 0.0012 0.0012
4 0.0226 0.0226 0.0066 0.0066 0.0 0.0

1000 100 1 0.0536 0.0536 0.0216 0.0216 0.0042 0.0042
2 0.0358 0.0358 0.0134 0.0134 0.0016 0.0016
3 0.0216 0.0216 0.007 0.007 0.0 0.0
4 0.0126 0.0126 0.0036 0.0036 0.0 0.0

100 1000 1 0.1312 0.1312 0.0698 0.0698 0.0244 0.0244
2 0.1146 0.1146 0.0636 0.0636 0.019 0.019
3 0.1038 0.1038 0.0564 0.0564 0.0148 0.0148
4 0.092 0.092 0.0508 0.0508 0.0128 0.0128

1000 1000 1 0.0812 0.0812 0.0394 0.0394 0.0086 0.0086
2 0.0758 0.0758 0.0356 0.0356 0.0066 0.0066
3 0.0686 0.0686 0.0314 0.0314 0.0056 0.0056
4 0.0612 0.0612 0.0272 0.0272 0.0042 0.0042

As we can see from the table above, the size of the test for the sequential procedure and
the maximum is equivalent in the empirical results. The tables that follow only show
the size of the test for ΘM,T assuming that PH0(ΘM,T > c) = PH0(τM < T − h) = α.
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Table 5.2. Empirical performance of test size, where Xi ∼ Exp(λ = 2)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.1 0.0688 0.033

2 0.0774 0.0474 0.0192

3 0.0612 0.0342 0.0122

4 0.043 0.0258 0.0088

1000 100 1 0.0854 0.053 0.022

2 0.0648 0.037 0.013

3 0.0494 0.026 0.007

4 0.0346 0.018 0.0046

100 1000 1 0.1476 0.091 0.0422

2 0.1276 0.0802 0.0314

3 0.118 0.0734 0.0274

4 0.107 0.0646 0.0236

1000 1000 1 0.0896 0.0512 0.0172

2 0.0812 0.0438 0.014

3 0.074 0.0388 0.0116

4 0.0676 0.0358 0.0094

Table 5.3. Empirical performance of test size, when Xi ∼ T (ν = 5)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.0822 0.044 0.0158

2 0.0292 0156 0.0048

3 0.004 0.0024 0.0

4 0 0 0

1000 100 1 0.0548 0.0292 0.0082

2 0.0234 0.011 0.0026

3 0.0016 0.0 0.0

4 0 0 0

100 1000 1 0.129 0.077 0.0126

2 0.0754 0.04 0.0132

3 0.0412 0.0204 0.0052

4 0.0144 0.0066 0

1000 1000 1 0.0854 0.0436 0.0126

2 0.0514 0.0242 0.0068

3 0.0274 0.0116 0.0026

4 0.0104 0.0038 0.0012
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Table 5.4. Empirical performance of test size, when Xi ∼ χ2
(ν=5)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.1158 0.0796 0.0322

2 0.0902 0.0544 0.0196

3 0.0696 0.039 0.0132

4 0.0502 0.0254 0.0076

1000 100 1 0.1034 0.0636 0.0214

2 0.0798 0.0412 0.0136

3 0.0576 0.0284 0.0076

4 0.0406 0.019 0.0034

100 1000 1 0.1546 0.0956 0.0156

2 0.1396 0.0818 0.0328

3 0.1278 0.0756 0.0304

4 0.113 0.0688 0.0262

1000 1000 1 0.095 0.048 0.0156

2 0.0826 0.0428 0.0122

3 0.074 0.0398 0.001

4 0.0656 0.0366 0.0082

Table 5.5. Empirical performance of test size, when Xi ∼ F(ν1=6,ν2=7)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.1382 0.104 0.0622

2 0.0712 0.047 0.0242

3 0.0228 0.0136 0.007

4 0.0036 0.0024 0.001

1000 100 1 0.0914 0.0638 0.036

2 0.0454 0.0318 0.0168

3 0.0164 0.0102 0.0048

4 0.003 0.0016 0.0

100 1000 1 0.1878 0.1408 0.0372

2 0.1146 0.086 0.0496

3 0.0784 0.0.0552 0.031

4 0.0444 0.0282 0.0136

1000 1000 1 0.0986 0.0672 0.0372

2 0.0726 0.0514 0.0254

3 0.0506 0.0342 0.0176

4 0.0286 0.0182 0.009

21



Table 5.6. Empirical performance of test size, when Xi ∼ Unif(0, 5)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.90)

100 100 1 0.1014 0.0572 0.0166

2 0.077 0.04 0.0082

3 0.0574 0.0262 0.0044

4 0.0388 0.0158 0.002

1000 100 1 0.095 0.0498 0.0122

2 0.0716 0.00338 0.0054

3 0.0508 0.0222 0.003

4 0.0332 0.012 0.001

100 1000 1 0.1482 0.0854 0.029

2 0.134 0.075 0.0234

3 0.1232 0.068 0.0186

4 0.1126 0.0608 0.0144

1000 1000 1 0.1022 0.047 0.0136

2 0.093 0.0448 0.0116

3 0.0852 0.04 0.0094

4 0.0752 0.0356 0.0078

Table 5.7. Empirical performance of test size, when
Xi ∼ Gamma(k = 1, θ = 1)

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.1114 0.074 0.0376

2 0.081 0.055 0.0248

3 0.0652 0.0406 0.0142

4 0.0508 0.0296 0.0082

1000 100 1 0.0758 0.045 0.0176

2 0.0798 0.0412 0.0136

3 0.0402 0.0198 0.0046

4 0.0282 0.0142 0.0022

100 1000 1 0.1466 0.1002 0.016

2 0.1258 0.0842 0.0378

3 0.1168 0.0764 0.0318

4 0.107 0.0718 0.0266

1000 1000 1 0.0908 0.05 0.016

2 0.0796 0.0442 0.0116

3 0.073 0.0384 0.0084

4 0.0658 0.034 0.007

Based on the results shown for i.i.d. random variables, it is clear to see that when β = 1
we get empirical results that are the closest to the chosen test size α. The above exam-
ples also demonstrate the consistency of the test regardless of what type of distribution
is being simulated from. We verified that for independent random variables this test
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does not need assumptions on the distribution of the random variable. We merely need
stationarity and conditions on the second moment to ensure a finite variance which is
consistent with our assumptions thus far. To further demonstrate the capabilities of
the test in the i.i.d. case, we simulated τM under HA. According to (2.20) we should
get that the sequential procedure stops at a change point with approximately probabil-
ity converging to one. Table 5.8 shows that this is indeed the case. The first examples
shown in Table 5.8 increment the mean away from the training sample mean in order
to get a sense for how the numerical difference of the mean influences the change detec-
tion. We also used other types of distributions with means away from zero to verify this
consistency. The first example is a good indicator of how the values of β influence how
conservative the test is when the difference between the hypothesized mean and the true
mean is small.

Table 5.8. Sample stopping times under HA, where training sample is
N(0,1), α = 0.1,M = T = 100

Test Sample β P(τM < T − h) Test Sample P(τM < T − h) Test Sample P(τM < T − h)

N(1,1) 1 0.9488 N(2,1) 1 N(3,1) 1

2 0.8942 1 1

3 0.855 1 1

4 0.8072 1 1

N(4,1) 1 1 χ2
(2) 1 Gamma(k = 5, θ = 1/5) 0.9932

2 1 0.9994 0.9908

3 1 0.9988 0.9802

4 1 0.997 0.9510

Exp(λ = 1/5) 1 1 Unif(0, 5) 1 Poisson(µ = 1) 0.9422

2 1 1 0.8960

3 1 1 0.8948

4 1 1 0.8004

6. Dependent Sequences and Long-Run Variance

The previous cases have used i.i.d. random variables to obtain the desired results of the
testing procedure presented in Section 2. The following material presents the necessary
conditions to apply this procedure when there is a dependence among the sequence of
random variables. There are various dependent process models that we would like to
evaluate using ΘM,T with the correct critical values and the appropriate value of σ for
the boundary function. We show that the critical values found in Table 4.2 are the same
for these settings and that the estimator for σ has a simple closed form. Before theo-
rems are presented and the models are analyzed there is a need for a few definitions and
some clarification of notation. This notation is used throughout the derivation of the
long-run cumulative impulse response or long-run variance as we refer to it here, de-
noted by σ2xt .

The goal is to estimate the long-run variance for a particular process in a non-parametric
way. The the parametric form of the long-run variance is derived using a few well-known
theorems and which then leads to the non-parametric estimator. We use Wold’s Decom-
position and the infinite order auto regressive moving average representation we showed
in Section 2 to arrive at the parametric form when the model parameters are known.
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The main component of the long-run variance is the autocovariance function. The auto-
covariance function is denoted by

γj = Cov(Xt, Xt+j).(6.1)

White noise is assumed to be normally distributed with mean zero and variance σ2w, i.e.

wj ∼ N(0, σ2w).(6.2)

Unless otherwise specified in simulations, we assume that σ2w = 1. The sample autoco-
variance function is denoted by

γ̂(h) =
1

n

n−|h|∑
t=1

(
xt+|h| − x̄

)
(xt − x̄) for − n < h < n.(6.3)

Wold’s decomposition theorem (Fuller (1996)) states that any covariance stationary
time series Xt has a linear process or infinite order moving average representation of
the form

Xt = µ+

∞∑
k=0

ψkwt−j ,

where the weights ψj are assumed to have the following properties

ψ0 = 1,
∞∑
k=0

ψk <∞.

In Wold form it can be shown that

E[Xt] = µ,

γ0 = Var(Xt) = σ2w

∞∑
k=0

ψ2
k,

γj = Cov(Xt, Xt−j) = σ2w

∞∑
k=0

ψkψk+j .

For a stationary and ergodic time series lims→∞ψs = 0 and the long-run cumulative
impulse response

∑∞
s=0 ψs <∞. The Wold representation in lag operator notation is

ψ(L) =

∞∑
k=0

ψkL
k, ψ0 = 1.

With ARMA(p, q) models the Wold polynomial is approximated by the ratio of the AR
and MA polynomials when the assumptions of causality are met or when the roots of
δ(z) and θ(z) lie outside the unit circle

ψ(1) =
θ(1)

δ(1)
.
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For GARCH models, instead of the Wold representation, the unconditional variance of
the series is used. It is calculated by the ratio of the mean to the ARCH and GARCH
component polynomials α(L) and β(L) respectively

ψ(1)2 =


ω

α(1)
ARCH(p),

ω

α(1) + β(1)− 1
GARCH(p, q).

We rely on Theorem 6.1 given below to keep our analysis consistent with the conver-
gence we established for ΘM,T with independent random variables. The form of the
long-run variance is due to Newman and Wright, (1981). The following definition is an
important assumption in the following theorems.

Definition 6.1. Two random variables X,Y are associated if Cov(X,Y ) = E[XY ] −
E[X]E[Y ] is non-negative.

Theorem 6.1. (Newman and Wright, 1981) Suppose X1, X2, ... is a non-degenerate,
strictly stationary, finite variance sequence which is associated and such that

σ2 = Cov(X1, X1) + 2
∞∑
j=2

Cov(X1, Xj) <∞.(6.4)

For each n = 1, 2, ..., define the stochastic process

Wn(t) = [X1 + · · ·+Xm + (nt−m)Xm+1 − ntE(X1)] /(σ
√
n)(6.5)

with m/n ≤ t < (m+ 1)/n

for 0 ≤ t ≤ T − h; then the sequence of processes Wn converges in distribution (in
C[0, T ]) to the standard Wiener process.

Theorem 6.2. Let {Xj : j ∈ N} be a strictly stationary sequence of associated random
variables with E[Xj ] = 0,E[X2

j ] <∞. Assume

0 < σ2 = Cov(X1, X1) + 2

∞∑
j=2

Cov(X1, Xj) <∞(6.6)

Then {Xj : j ∈ N} fulfulls the invariance principle.

Our forthcoming definition of long-run variance coincides with the theorems given above.
Note that even if we don’t have stationarity, we can still get the invariance principle
with other conditions on the random variables. Consider the following Theorem,

Theorem 6.3. Let {Xj : j ∈ N} be a sequence of associated random variables with
E[Xj ] = 0,E[X2

j ] <∞. Assume

σ−2n E[SnkSnl]
n−→ min{k, l},(6.7)

{
σ−2n (Sm+n − Sm)2 : m ∈ N ∪ {0}, n ∈ N

}
is uniformly integrable.(6.8)
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Then {Xj : j ∈ N} fulfills the invariance principle.

These are now conditions on the expectation of the partial sums which do not include
stationarity. These assumptions along with the assumptions in Section 2 give an op-
portunity to generalize what has been found in our results. In general we are assuming
that the limiting distribution of these random variables is not a constant. Thus we can
reasonably assume that they are non-degenerate. We also not that we need a finite vari-
ance to work for the same theorem, however, this is already necessary because recall in
the function g(h, k) we have σ in the denominator.

In order for our test statistic, ΘM,T to be valid according to the derivation, we need
an estimator of the variance that is given by (6.6). We will use the methodology of the
Long-Run Variance, Long-Run Cumulative Impulse Response, or Asymptotic Variance
of the series Xt to obtain this result. Let Xt be a stationary and ergodic time series.
Anderson’s central limit theorem for stationary and ergodic processes (Hamilton (1994))
states

√
T (X − µ)

D−→ N

0,

∞∑
j=−∞

γj

 ,

or

X ≈ N

µ, 1

T

∞∑
j=−∞

γj

 .

The sample size, T , times the asymptotic variance of the sample mean is often called
the long-run variance of xt,

σ2xt = lim
T→∞

T Var(X) =
∞∑

j=−∞
γj .

Since γ−j = γj , σ
2
xt may be alternatively expressed as

σ2xt = γ0 + 2
∞∑
j=1

γj .

Using the Wold decomposition above, this can be rewritten further as

σ2xt = σ2w

∞∑
k=0

ψ2
k + 2

∞∑
j=1

γj = σ2w

∞∑
k=0

ψ2
k + 2σ2w

∞∑
j=1

( ∞∑
k=0

ψkψk+j

)
= σ2w

( ∞∑
k=0

ψk

)2

,

and again using the Wold representation, and what we derived for (2.14) we have

σ2xt = σ2wψ(1)2.(6.9)

We use (6.9) to derive the parametric long-run variance for the models used in simula-
tion. A consistent estimate of σ2xt may be computed by first estimating the appropri-
ate parameters of the chosen ARMA(p, q) model and then substituting that into (6.9).
Note that a consistent estimate of σ2xt may also be computed using some non-parametric
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methods. An estimator made popular by Newey and West (1987), and the one we use
for our examples is the weighted auto covariance estimator given by

σ̂2xt = γ̂0 + 2

RM∑
j=1

wj,M γ̂j ,(6.10)

where wj,M are weights which sum to unity and RM is a truncation lag parameter that

satisfies RM = O(M1/3). It was suggested by Newey and West that for general lin-
ear processes to use the Bartlett weights wj,M = 1 − j/(f(M) + 1) where f(M) =

b4(M/100)2/9c. In the following sections we use other well known kernels to evaluate if
there are better choices of kernels which yield more consistent results for the monitoring
procedure. We use z = j/(f(M) + 1) and M equal to the number of training exam-
ples in the kernel functions. These are all easily implemented within the simulations,
and the definition of each kernel used is given in Table 6.1. The simulations performed
on ARCH and GARCH models leave out the kernel weights due to the fact that these
processes are uncorrelated as shown in Appendix C.

Table 6.1. Kernels used

Kernel Name Abbreviation Kernel, K(z), where 0 ≤ z ≤ 1

Bartlett B. K(z) = 1− z

Parzen P. K(z) =

1− 6z2 + 6z3, 0 ≤ z ≤ 0.5,

2(1− z)3, 0.5 < z ≤ 1,

Flat-Top F.T. K(z) =

1, 0 ≤ z ≤ 0.5,

2(1− z), 0.5 ≤ z ≤ 1,

Quadratic Spectral Q.S. K(z) =
25

12π2z2

(
sin(6πz/5)

6πz/5
− cos(6πz)

)

Tukey-Hanning T.H. K(z) =
1 + cos(πz)

2

7. Test Size for Dependent Random Variables using ΘM,T

For each model we evaluate, the parametric and non-parametric estimate are compared
via simulation. The models evaluated are forms of ARMA(p, q) and GARCH(p, q) mod-
els that are the most widely used for dependent data. The first table for each model
shows the empirical size of the test for the same sample size scenarios used in the previ-
ous simulations, using the parametric form of σ2xt . The second table shows the empirical
size of the test using the non-parametric long-run variance estimator with a fixed sam-
ple size in order to compare the kernels used. The goal with these simulations is to eval-
uate which values of β and which kernels give a more accurate size of the test. For the

27



AR(1) model, the parametric long-run variance we derived in (6.9) equates to

σ2xt = σ2wψ(1)2 =
σ2w
δ(1)2

=
σ2w

(1− δ1)2
.

In the following simulations, δ1 = 0.2 which satisfies the conditions for stationarity.
Thus

σ2xt =
1

(1− 0.2)2
= 1.5625,(7.1)

and σxt ≈ 1.25 in the boundary function for ΘM,T .

Table 7.1. Size of the test for AR(1) sequences with δ1 = 0.2 with given
long-run variance

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.0588 0.029 0.008

2 0.0496 0.202 0.0038

1000 100 1 0.0544 0.022 0.002

2 0.0406 0.0158 0.002

100 1000 1 0.1176 0.057 0.02

2 0.1062 0.0582 0 .0158

1000 1000 1 0.0734 0.039 0.0075

2 0.0696 0.0328 0.0054

Table 7.2. Size of the test for AR(1) sequences with δ1 = 0.2 with esti-
mated long-run variance

Kernel β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

B. 1 0.0908 0.0496 0.019

2 0.0672 0.0348 0.0128

P. 1 0.1016 0.0568 0.022

2 0.0738 0.0394 0.0138

F.T. 1 0.0776 0.041 0.0154

2 0.0566 0.0304 0.0096

Q.S. 1 0.085 0.0442 0.0182

2 0.0628 0.0326 0.0112

T.H. 1 0.0882 0.048 0.0186

2 0.0646 0.034 0.0124

From these results we can see that the procedure is giving results that are consistent
with the i.i.d. trials that were run. Another consistency we see is that when β = 2 we
get empirical results that are closer to the true values of α. We did not include results
when β = 3 or β = 4 because similar to the i.i.d. simulations, those values of β produce
empirical Type 1 Error to be much lower than expected.
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For the MA(1) model, the parametric long-run variance we derived in (6.9) equates to

σ2xt = σ2wψ(1)2 = σ2wθ(1)2 = (1 + θ1)
2.

In the following simulations, θ1 = 0.3 which satisfies the conditions for stationarity.
Thus σxt =

√
(1 + 0.3)2 = 1 + 0.3 = 1.7 in the boundary function for ΘM,T .

Table 7.3. Size of the test for MA(1) sequences with θ1 = 0.3 with
given long-run variance

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.0578 0.028 0.009

2 0.039 0.0175 0.0025

1000 100 1 0.0446 0.002 0.06

2 0.0325 0.0145 0.003

100 1000 1 0.116 0.05 0.007

2 0.0925 0.049 0.0175

1000 1000 1 0.0718 0.034 0.0065

2 0.064 0.032 0.005

Table 7.4. Size of the test for MA(1) sequences with θ1 = 0.3 with
estimated long-run variance

Kernel β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

B. 1 0.1176 0.0286 0.0066

2 0.0766 0.0396 0.0088

P. 1 0.1032 0.0566 0.0182

2 0.0812 0.0446 0.0104

F.T. 1 0.1106 0.062 0.018

2 0.0656 0.0312 0.008

Q.S. 1 0.0868 0.0462 0.0138

2 0.0714 0.035 0.008

T.H. 1 0.0952 0.0522 0.0156

2 0.0876 0.0502 0.0188

For the ARMA(1,1) model, the parametric long-run variance we derived in (6.9) equates
to

σ2xt = σ2wψ(1)2 = σ2w

(
θ(1)

δ(1)

)2

.

In the following simulations, δ1 = 0.2, θ1 = 0.3 which satisfies the conditions for station-
arity. Thus

σ2xt =

(
1 + 0.3

1− 0.2

)2

,
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and σxt = 1.625 in the boundary function for ΘM,T .

Table 7.5. Size of the test for ARMA(1,1) sequences with δ1 = 0.2, θ1 =
0.3 with given long-run variance

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.067 0.0328 0.008

2 0.0514 0.0238 0.0052

1000 100 1 0.0684 0.0324 0.0074

2 0.0522 0.0222 0.0038

100 1000 1 0.188 0.108 0.039

2 0.1674 0.0986 0.031

1000 1000 1 0.1868 0.1104 0.039

2 0.1694 0.1036 0.0332

Table 7.6. Size of the test for ARMA(1,1) sequences with δ1 = 0.2, θ1 =
0.3 with estimated long-run variance

Kernel β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

B. 1 0.1096 0.0602 0.0226

2 0.08 0.0446 0.014

P. 1 0.1362 0.0794 0.0294

2 0.097 0.0552 0.0192

F.T. 1 0.0736 0.0384 0.0132

2 0.0542 0.0288 0.0094

Q.S. 1 0.0912 0.0502 0.0182

2 0.0668 0.0358 0.0116

T.H. 1 0.1036 0.0556 0.021

2 0.0754 0.0418 0.0134

For the ARCH(1) model, the parametric long-run variance we obtain is taken from in
(C.4). We first choose ω = 0.3 and α1 = 0.25 to satisfy condition (C.6). This equates to

σ2rt =
ω

1− α1
=

0.3

1− 0.25
= 0.4.

Thus σrt ≈ 0.632 in the boundary function for ΘM,T . For the ARCH(p) process, we
have by (C.2) that rt is an uncorrelated process. As a result, the formulation we have
for the long-run variance estimator becomes a simple calculation

σ̂2rt = γ̂0.

Based on this estimator, we don’t use kernels in the estimation of σxt for the boundary
function of ΘM,T .
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Table 7.7. Size of the test for ARCH(1) sequences with ω = 0.3, α1 =
0.25 with given long-run variance

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.0766 0.0342 0.0102

2 0.0502 0.023 0.0064

1000 100 1 0.0558 0.0294 0.008

2 0.0408 0.0176 0.0044

100 1000 1 0.119 0.068 0.021

2 0.107 0.0582 0.0164

1000 1000 1 0.774 0.0386 0.0104

2 0.0704 0.0342 0.0088

Table 7.8. Size of the test for ARCH(1) sequences with ω = 0.3, α1 =
0.25 with estimated long-run variance

β Kernel P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

1 None 0.0832 0.041 0.0134
2 None 0.0548 0.0258 0.007

For the GARCH(1,1) model, the parametric long-run variance we obtain is taken from
in (C.4). We first choose ω = 0.3 and α1 = 0.25, β1 = 0.1 to satisfy condition (C.8).
This equates to

σ2rt =
ω

1− α1 − β1
=

0.3

1− 0.25− 0.1
≈ 0.462

Thus σrt ≈ 0.679 in the boundary function for ΘM,T .

Table 7.9. Size of the test for GARCH(1,1) sequences with ω =
0.3, α1 = 0.25, β1 = 0.1 with given long-run variance

M T β P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

100 100 1 0.0776 0.035 0.0108

2 0.0506 0.0234 0.007

1000 100 1 0.0556 0.0292 0.0088

2 0.0418 0.0196 0.0048

100 1000 1 0.1204 0.068 0.0206

2 0.1086 0.058 0.0168

1000 1000 1 0.0786 0.0394 0.0106

2 0.0708 0.035 0.0092
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Table 7.10. Size of the test for GARCH(1,1) sequences with ω =
0.3, α1 = 0.25, β1 = 0.1 with estimated long-run variance

β Kernel P(ΘM,T > c.90) P(ΘM,T > c.95) P(ΘM,T > c.99)

1 None 0.0842 0.0426 0.0138
2 None 0.0558 0.0272 0.0076

Based on the tables above we can see that when β = 1 we get closer to the specified size
of the test. We conclude here that the best value of beta is 1 and the kernel that gives a
test size closest to the chosen size is the Parzen kernel.

8. Visualization of Sequential Stopping Times

The sequential monitoring procedure was then applied to several processes where the
training and test sets are simulated from models with different parameters to check the
size of the test. Each training and test model is specified to satisfy the conditions of sta-
tionarity, but with different parameters to check how soon this procedure would detect
the change. In each of these examples, M = T = 100, which gives the rolling window a
value of h = 10, and we use the Parzen Kernel for the ARMA processes with the critical
value chosen for α = 0.1.
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Figure 8.1. Simulated stopping time of ARMA processes
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Figure 8.2. Simulated stopping time of ARCH(1), GARCH(1,1) processes

The plots above show, as expected, is that ΘM,T is not just detecting the change, but
quickly detecting the change in the mean or the parameter used to generate the test
sample. In other examples that were simulated, some stopping times occurred later than
others. However, in the parameterizations used above the sequential procedure always
detected a change before the end of the test set. These tests would naturally lead into
an analysis of the power function, however due to time constraints these are left as pos-
sibilities for future research. The main point here is that this test works when applied
to simulated stationary dependent sequences with small changes in the mean or parame-
ters. This synthetic example leads us to the main application of the testing procedure.

9. Applications

A natural application of the procedure presented is with financial and economic data.
The application of these tests were performed on several stocks that historically have
experienced extreme losses, bubbles, or have stayed neutral during an extreme economic
event. More specifically we evaluate a handful of indexes from the great depression,
Japan’s bubble economy in the 1980s, the financial crisis of 2008, the “dot-com bub-
ble” of 1999, and few that have recently experienced major shifts in market value. The
groups are chosen from different scenarios to have applications in different time periods.
Using the ’quantmod’ package in R, we can look at the weekly, monthly, quarterly, and
annual returns of these stocks and evaluate the procedure on detecting large deviations
from normal return. As an introductory example, consider the Dow-Jones Industrial
Average (DIJA) monthly share price in dollars (USD) between 1927 and 1934 obtained
via FRED.

33



1928 1929 1930 1931 1932 1933 1934

50
10

0
15

0
20

0
25

0
30

0
35

0

DJIA Stock Price

Date

P
ric

e 
(U

S
D

)

Figure 9.1. Dow-Jones Industrial Monthly Stock Price Index

In order to apply the test properly we need to convert the monthly price, St, into monthly
log returns to have a better chance of meeting the stationarity assumption. We do so by
taking the ratio of the monthly price at time t and the monthly return at time t − 1 in
order to calculate the ratio

St
St−1

,

and then we take the log of this ratio to get the return series

rt = log

(
St
St−1

)
= log(St)− log(St−1).

We then train the model on the first 12 months of the series.
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Figure 9.2. Dow-Jones Industrial log monthly stock returns

The Augmented Dickey-Fuller test is applied to the training sample and results in a p-
value of 0.01 which is in favor of the series being stationary. We then run the sequential
monitoring test on this series and obtain a stop time of April 1st, 1929. The window
h = 7 which means that the moving average is comparing the returns between April and
November of that year.

DJIA Log Monthly Returns

Time

Lo
g 

 M
on

th
ly

  R
et

ur
n

0 20 40 60

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

1928 1929 1930 1931 1932 1933 1934

50
10

0
15

0
20

0
25

0
30

0
35

0

DJIA Price Index

Date

P
ric

e 
(U

S
D

)

Figure 9.3. Dow-Jones Industrial log monthly stock returns and stop time

We can see from the test that the indicated stop time coincides with the period of time
just before the sharp declines. This is a promising result that leads us to apply this to
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other stock prices and indices to gain a better understanding of how this test could be
used in the context of stock returns.

To illustrate the capabilities of the test further we have three broader groups of secu-
rities with which to apply the test, namely ’loss’, ’neutral’, and ’gain’. These groups
correspond to what type of change we are trying to detect. The ’loss’ group will be
stocks that lost significantly from the financial crisis of 2008 and a few more recent.
These include American International Group (AIG), Bank of America (BAC), Citi-
group (C), GoPro (GPRO), General Electric (GE), Goldman Sachs (GS), American Ex-
press (AXP), JP Morgan (JPM), and Zions Bank (Zion). These are among the hardest
stocks hit during the 2008 financial crisis, AIG being the worst performing stock that
year because of their insurance exposure to housing and housing derivative markets.
The ’neutral’ group is composed of stocks that weathered the declines of the 2008 finan-
cial crisis and tend to be regarded as ’recession proof’ stocks. These include AutoZone
(AZO), Clorox (CLX), Johnson and Johnson (JNJ), Dollar Tree (DLTR), and Wal-Mart
(WMT). The ’gain’ group is composed of stocks that experienced large bubbles before
the dot-com crash of 1999 and Japan’s bubble economy from the 1980’s. This group
includes Bitcoin (BTC), Cisco (CSCO), Microsoft (MSFT), Nikkei 225 Stock Index
(N225) and Qualcomm (QCOM). These stock price histories are shown below as well as
all test results are given in Appendix A. Each of these groups has various start dates
which were chosen to be 1-3 years before the major change. This is to allow enough
training data for the sample mean to be consistent and to meet the stationarity assump-
tions for the test. The abbreviations we use are summarized in Table 9.1 and the histor-
ical change dates are listed in Table A.2.

Table 9.1. Stock groups

Group Name Abbreviations

Loss AIG, AXP, BAC, C, GE, GS, JPM, ZION
Neutral AZO, CLX, DLTR, JNJ, WMT

Gain (Bubble) BTC, CSCO, GPRO, MSFT, N225, QCOM
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Figure 9.4. Historical stock prices of loss group
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Figure 9.5. Historical stock prices of neutral group
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Figure 9.6. Historical stock prices of gain group

Before the test is applied, we need to evaluate which set among weekly, monthly, quar-
terly, and yearly returns would best meet the assumptions of the test and be the most
practical. We start by visualizing the returns in each category for the stock and test-
ing for stationarity. Weekly and monthly returns begin in the year 2005, and the other
returns begin on the first trading day of the year 2000 to provide enough data in each
category. Daily returns were ruled out due to the fact that they tend to have mean zero
over the time periods examined even during more volatile periods in the actual clos-
ing price. The test would be possibly work better at smaller subsets of daily returns to
apply the test and have significant change points but we leave this for future research.
Sharp changes in the daily returns are difficult to detect with this procedure for the
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time period under consideration because they don’t last long enough for a rolling mov-
ing average to pick up the change even with small h. For stationarity we use the Aug-
mented Dickey-Fuller test on the return series for the training sample. The stocks we
present as examples were checked to meet the stationarity assumption.
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Figure 9.7. AIG stock returns

As we can see from these plots, the amount of data in each category as we move from
weekly to annual returns become more limited. The choice was made to evaluate the
test procedure on the weekly and monthly returns because of the amount of data avail-
able and the approximate stationarity of the first two years of data (2005 -2007 for AIG)
in each series. In addition, the weekly and monthly returns capture more granular changes
in the stock price that would be hidden when working with quarterly, and even annual
returns. Another disadvantage of applying this test to quarterly returns is illustrated in
the following scenario. The test was performed on the quarterly returns set of AIG and
the resulting stop time in red is shown below.
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Figure 9.8. Quarterly stock return stop time

At first glance, the stop times seem to give a reasonable conclusion that if you were
able to make a change or exit AIG on September 29th, 2006 or December 31st, 2007
of course you would have missed the large AIG price decline in 2008. However, in this
case there are T = 70 points in the test set for quarterly returns and T = 12 for an-
nual returns which imply h = 8 and h = 3 respectively. This means that the test has
to look ahead three years for the annual returns and two years for quarterly returns. As
the returns start to drift further apart, the test has to look further into future data to
find a reasonable conclusion and becomes less practical for application. In the case of
weekly returns, of the 730 weeks available between 2005 and 2018, we train the mean
on the first 100 data points which leaves 630 data points for the test set. This gives us
a training period from the beginning of 2005, through the middle of 2006. The test on
weekly returns gives a rolling window of h = 24 which translates to 24 weeks, or about 6
months of future data. This seems more reasonable than the previous case. The results
of the tests in weekly returns for a few of the loss stocks are shown below.
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Figure 9.9. Weekly return stop times for loss group

From this sample of weekly stop dates, we can see that the method is picking up on sig-
nificant changes to the stock returns. In the case of monthly returns, the rolling win-
dow stays around h = 10 which is 10 months into the future. This value of h is still
a fairly reasonable window for the moving average. The stopping time of weekly and
monthly returns gives a reasonable change point before the worst actually happens for
these stock returns. Below are the closing prices of the change points discovered from
both the monthly and weekly returns. Notice that the sequential monitoring procedure
predicts the change before the bottom is actually reached indicating an acceptable point
to exit the security.The stop times determined by the test on weekly and monthly re-
turns are shown in each stock market history below. The weekly stop time is shown in
red and the monthly stop time in blue.

Table 9.2. Legend

Week Stop Time

Month Stop Time

Price
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Figure 9.10. Daily closing price stop times for loss group
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Figure 9.11. Daily closing price stop times for neutral group
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Figure 9.12. Daily closing price stop times for gain group

The weekly and monthly stop times found by the test consistently produce stopping
times that come before a major decline. In the absence of a decline, the test appropri-
ately does not signal a change or stopping point. For the gain or ’bubble’ group that
exhibits extreme appreciation in returns followed by steep declines, the test also appro-
priately signals a change before the decline reaches a bottom. There is a noticeable dif-
ference between the stopping times produced with weekly and monthly returns. Similar
to daily returns, weekly returns seem to be too granular for some of these tests to pick
up a major change point. This could be attributed to the amount of time it takes to
reach a bottom for a decline, the steeper declines seem easier to detect with weekly re-
turns. The longer declines seem to be signaled better by the monthly returns. These
change points are also detected using the size of the test α = 0.1, which means that if
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the size of the test is decreased it would be even harder for the weekly returns to detect
a change.

10. Conclusion

From these simulations and applications we see that this sequential monitoring proce-
dure can be used in practice to obtain change points that are significantly outside the
typical distribution of examples observed until that point. This could be used for de-
cision making processes with stocks, other time series data, and data that is assumed
to be i.i.d.. The lack of computational complexity of the test allows it to be scalable to
large data sets. The simulation run time was more heavily dependent on sampling from
the particular model or distribution than the calculation of the test statistic. The simu-
lations not only yielded a lot of theoretical results that can be used in practice, but also
resulted in methods in R that make it simple to apply these procedures. We have a test
that works well for i.i.d. observations, which could be used in place of other hypothe-
sis testing procedures when others are not applicable because of assumption violations.
The test works well for ARMA and GARCH processes, which could potentially extend
to other types of time dependent models. The test has the possibility of extending more
generally to processes that aren’t stationary which would further the scope of applica-
tions.

The test we proposed is not without its limitations. When applied to real-time stock
returns it is obviously not practical to look six to twelve months into the future. The
rolling window can help or hinder the ability of the test to pick up less extreme changes
in the distribution. For example, short-term decisions would be hindered if there is too
much test data because the rolling window could be too large. The dependence on k in
the boundary function which allows more emphasis on short term dynamics, hinders the
test from picking up changes that are further away from the training sample. This could
be remedied by updating the training sample if no significant change is found, check-
ing for stationarity, and then continuing on with the test. However, these limitations
only open opportunities for further research into other types of data that work well with
this test. The simulations only gave a glimpse into the power of the test in each setting.
Further research into the power function may also yield insight into what types of data
and parametric assumptions are needed for the best results.
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Appendices

Appendix A. Stock Return Data

Table A.1. Stock stop time data when α = 0.1

Stock Weekly Returns Monthly Returns

Train M T h M + k∗ Stop Date Train M T h M + k∗ Stop Date

AIG 01/03/2005 - 12/01/2006 100 630 25 168 3/20/2008 01/31/2005 - 12/29/2006 24 144 12 27 03/30/2007

AXP 01/03/2005 - 12/01/2006 100 630 25 177 05/23/2008 01/31/2005 - 12/29/2006 24 144 12 25 01/31/2007

AZO 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 0 -

BAC 01/03/2005 - 12/01/2006 100 630 25 177 05/23/2008 01/31/2005 - 12/29/2006 24 144 12 26 02/28/2007

BTC 12/07/2014 - 11/27/2016 104 114 10 0 - 12/31/2014 - 11/30/2016 24 26 5 25 12/31/2016

C 01/03/2005 - 12/01/2006 100 630 25 123 05/11/2007 01/31/2005 - 12/29/2006 24 144 12 25 01/31/2007

CSCO 01/03/1998 - 11/27/1999 104 105 10 0 - 01/31/1997 - 12/31/1998 24 24 4 35 11/30/2000

CLX 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 0 -

DJIA - - - - - - 12/1/1927 - 12/1/1928 12 60 7 17 04/1/1929

DLTR 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 0 -

GE 01/03/2005 - 12/01/2006 100 630 25 144 05/23/208 01/31/2005 - 12/29/2006 24 144 12 30 06/29/2007

GPRO 01/03/2014 - 06/13/2014 24 212 14 25 12/12/2014 01/31/2014 - 12/31/2014 12 43 6 13 06/30/2015

GS 01/03/2005 - 12/01/2006 100 630 25 178 05/30/2008 01/31/2005 - 12/29/2006 24 144 12 26 02/28/2007

JNJ 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 0 -

JPM 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 26 02/28/2007

MSFT 01/03/1998 - 11/27/1999 100 109 10 0 - 01/31/1997 - 12/31/1998 24 24 4 25 01/31/2000

N225 01/08/1988 - 12/28/1988 52 209 14 0 - 01/29/1988 - 12/30/1988 12 48 6 26 02/28/1990

QCOM 01/03/1997 - 11/27/1998 104 105 10 0 - 01/31/1997 - 12/31/1998 24 24 4 25 01/31/2000

WMT 01/03/2005 - 12/01/2006 100 630 25 0 - 01/31/2005 - 12/29/2006 24 144 12 0 -

ZION 01/03/2005 - 12/01/2006 100 630 25 123 05/11/2007 01/31/2005 - 12/29/2006 24 144 12 25 01/31/2007

Table A.2. Actual change dates

Abbreviation Change Month, Year

AIG, AXP, BAC, C, GE, GS, JPM, ZION September 2008
BTC November 2017

CSCO March 2000
GPRO October 2016
N225 July 1990

MSFT March 2000
QCOM March 2000

Table A.3. Legend for weekly and monthly return plots

Stop Time

Window

Return

For better visualization, if there is no stop time the red line stays at zero and the win-
dow is extended from that.
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Figure A.1. Return stop times for loss group
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Figure A.2. Return stop times for loss group
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Figure A.3. Return stop times for loss group cont.
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Figure A.4. Return stop times for neutral group
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Figure A.5. Return stop times for neutral group cont.
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Figure A.6. Return stop times for gain group
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Figure A.7. Return stop times for gain group
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Appendix B. Proofs

Proof of Theorem 2.1

Proof. First note that rewriting these partial sums as standard Wiener processes as-
sumes that the random variables are mean zero. However, in the context of the test
statistic, it actually doesn’t matter if we include the mean in the analysis or not. To
show this, let E[Xi] = µ. Under the null, this is the mean for all Xi, i ≥ 0. To get the
mean zero random variables in the partial sums we can subtract the mean inside each
partial sum∣∣∣∣∣∣∣∣∣∣∣

M∑
i=1

(Xi − µ)

M
−

M+k+h∑
j=M+k

(Xj − µ)

h

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

M∑
i=1

Xi −Mµ

M
−

M+k+h∑
j=M+k

Xj − hµ

h

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

M∑
i=1

Xi

M
− µ−


M+k+h∑
j=M+k

Xj

h
− µ



∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

M∑
i=1

Xi

M
−

M+k+h∑
j=M+k

Xj

h

∣∣∣∣∣∣∣∣∣∣∣
.

We use this result and Assumption 2.1 we can assume that σ = 1 we can rewrite the
test statistic in the following way

max
1≤k≤T−h

∣∣∣∣W1(M)

M
− 1

h
(W2(h))

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣W1(M)

M
− 1

h
(W2(k + h)−W2(k))

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣W1(M)√
M

1√
M
− 1√

h

(W2(k + h)−W2(k))√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣W1(M)√
M

1√
M
− 1√

h

(W2(k + h)−W2(k))√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣∣
√
h√
M

W1(M)√
M

− (W2(k + h)−W2(k))√
h

∣∣∣∣∣
/ (√

hg(h, k)
)
.

Assume that h/M → 0 and this implies that
√
h/M → 0. Then we can simplify the

expression above to be
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max
1≤k≤T−h

1√
h

∣∣∣∣W2(k + h)−W2(k)√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

|W2(k + h)−W2(k)|√
h

/(√
hg(h, k)

)
Now let k = uh for some u ∈ R. For β > 1/2 with the law of iterated logarithm

max
0<u<∞

|W2(u+ 1)−W2(u)| 1

(u+ 1)β

is well defined. So we want to have
√
hg(h, uh) = (u+ 1)β

max
1≤k≤T−h

|W2(k + h)−W2(k)|√
h

/(√
hg(h, k)

)
= max

1≤uh≤T−h

|W2(uh+ h)−W2(uh)|√
h

/(√
hg(h, uh)

)
= max

1≤uh≤T−h

|W2(uh+ h)−W2(uh)|√
h

/(√
hg(h, uh)

)
+ oP(1),

which is close in distribution to

max
1/h≤u≤(T−h)/h

|W2(u+ 1)−W2(u)|

/(√
hg(h, uh)

)
.

To derive the desired function, we need that 1/h → 0 and T/h → ∞, for this we need

that h→∞ but also that
√
h(g(h, uh))→ (1 + u)β and the limit is

max
0≤u≤∞

|W2(u+ 1)−W2(u)| /(1 + u)β,(B.1)

since
√
hg(h, k) =

√
hg(h, uh) = (u+ 1)β =

√
hhβ√
hhβ

(u+ 1)β =
√
h

(h+ uh)β

hβ+1/2

and this gives us our boundary function

g(h, k) =
(h+ k)β

hβ+1/2
.

Now assume that the variance for all Xi is σ2, we can follow a similar derivation
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max
1≤k≤T−h

∣∣∣∣σW1(M)

M
− 1

h
(σW2(h))

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣σW1(M)

M
− 1

h
(σW2(k + h)− σW2(k))

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

∣∣∣∣σW1(M)√
M

1√
M
− 1√

h

σ(W2(k + h)−W2(k))√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

|σ|
∣∣∣∣W1(M)√

M

1√
M
− 1√

h

(W2(k + h)−W2(k))√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

|σ|

∣∣∣∣∣
√
h√
M

W1(M)√
M

− (W2(k + h)−W2(k))√
h

∣∣∣∣∣
/ (√

hg(h, k)
)
.

Assume that h/M → 0 and this implies that
√
h/M → 0. Then we can simplify the

expression above to be

= max
1≤k≤T−h

|σ|√
h

∣∣∣∣W2(k + h)−W2(k)√
h

∣∣∣∣
/

g(h, k)

= max
1≤k≤T−h

|σ|√
h

|W2(k + h)−W2(k)|√
h

/
g(h, k)

= max
1≤k≤T−h

|σ| |W2(k + h)−W2(k)|√
h

/(√
hg(h, k)

)

Now let k = uh for some u ∈ R. For β > 1/2 with the law of iterated logarithm

= max
0<u<∞

|(W2(u+ 1)−W2(u))| 1

(u+ 1)β
.(B.2)

We want to have (√
h

σ
g(h, k)) = (k + h)β

)
.

So we can rewrite (B.2) as

max
1/h≤u≤(T−h)/h

|σ| (W2(h(u+ 1))−W2(h(u)|√
h

/(√
hg(h, uh)

)
D
=

1

hβ
max

1/h≤u≤(T−h)/h
|σ| |(W2(u+ 1)−W2(u))|

/
(1 + u)β.
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We need that
√
h

|σ|
g(h, k) =

√
h

|σ|
g(h, uh) = (u+ 1)β =

√
h |σ|√
h |σ|

hβ(u+ 1)β

hβ

=

√
h |σ|√
h |σ|

(h+ hu)β

hβ
=

√
h |σ|√
h |σ|

(h+ k)β

hβ

and this gives us our boundary function

g(h, k) =
|σ| (h+ k)β√

hhβ
=
|σ| (h+ k)β

hβ+1/2
.(B.3)

�

Proof of Theorem 2.2

Proof. We start by rewriting the probability of the sequential monitoring procedure
finding a change point,

P(τM < T − h) = P

(
Zk

gα(h, k)
> 1 for 1 ≤ k ≤ T − h

)
= P

(
max

1≤k≤T−h

Zk
g(h, k)

≤ cα
)
.

According to our calculations

max
1≤k≤T−h

|Zk|hβ+1/2

σ(h+ k)β
= max

1≤k≤T−h

∣∣∣∣∣X̄M − 1
h

M+k+h∑
i=M+k+1

Xi

∣∣∣∣∣h1/2+β
σ(h+ k)β

(B.4)

max
1≤k≤T−h

∣∣X̄M

∣∣h1/2+β
σ(h+ k)β

= oP

(
1√
M)

h1/2+β

hβ

)
= oP

((
h

M

)1/2
)

= oP(1),(B.5)

and therefore

max
1≤k≤T−h

|Zk|hβ+1/2

σ(h+ k)β
≈ max

1≤k≤T−h

∣∣∣∣∣ 1h
M+k+h∑
i=M+k+1

Xi

∣∣∣∣∣h1/2+β
σ(h+ k)β

+ oP(1)

= max
1≤k≤T−h

1

h

∣∣∣∣∣
M+k+h∑
i=M+k+1

Xi

∣∣∣∣∣h1/2+β
σ(h+ k)β

≈ max
1≤k≤T−h

hβ−1/2(M + k + h)α

(h+ k)β
for α < 1/2
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It is necessary here to check how this quantity behaves for the extreme values of k, first
let k = 1

hβ+1/2(M + k)α

hβ
=

1√
h

(M + h)α ≈ Mα

√
h
→ 0 as h→∞.(B.6)

Now let k = T

hβ+1/2(M + T + h)α

(h+ T )β
≈ h1/2(M + T )α

T β

≤ (Mα + Tα)√
hT β

→ 1

T β−α
√
h
→ 0,

thus we have

max
1≤k≤T−h

1
h |W (M + k + h)−W (M + k + 1)|h1/2+β

(h+ k)β
D
= max

1≤k≤T−h

|W (k + h)−W (k + 1)|h1/2+β

(h+ k)β
.

Let k = uh, we assume that h→∞ and that T/h→∞ to rewrite the previous quantity
as

max
1≤uh≤T−h

|W (k + h)−W (k + 1)|h1/2+β

(h+ k)β

= max
1/h≤u≤(T−h)/h

|W (u+ 1)−W (u+ 1/h)|h1/2+β

(u+ 1)β
D−→ max

0<u<∞

|W (u+ 1)−W (u)|
(u+ 1)β

Here we can choose c to be the critical values that were simulated in Section 4. �

Proof of Theorem 3.3

Proof. We divide the proof into steps.

Step 1: For integers k ∈ Z, by Feller’s inequality for the named distribution we have
that for all ε > 0 there is 0 < δ < 1 such that by the Borel - Cantelli lemma

P
(
|Γ(k)| ≥ (1− ε)

√
2 log(k)

)
= 2

(
1− Φ

(
(1− ε)

√
2 log(k)

))
≥ k1−δ.

Hence

∞∑
k=1

P
(
|Γ(y)| ≥ (1− ε)

√
2 log(k)

)
≥
∞∑
k=1

k1−δ =∞ for all ε > 0.

Since {Γ(k), k ≥ 1} are independent random variables,

1− ε ≤ lim inf
k→∞

|Γ(k)|√
2 log k

a.s.

Since ε > 0 is arbitrary ε→ 0

59



1 ≤ lim sup
k→∞

|Γ(k)|√
2 log k

a.s.

Let tk = ck where c ∈ R we want to show that

lim sup
k→∞

|Γ(tk)|√
2 log tk

≤ 1 a.s.(B.7)

Using that Γ(tk)
D
= N(0, 1) we get again

P
{
|Γ(tk)| ≥ (1 + ε)

√
2 log(tk)

}
= 2

(
1− Φ

(
(1 + ε)

√
2 log(tk)

))
Using the well known Feller’s Inequality (cf. Feller (1968), p. 175) we can give an upper
bound to the latter.(

1

x
− 1

x3

)
ex

2/2

√
2π
≤ P(X ≥ x) ≤ 1

x

ex
2/2

√
2π

for all x > 0.(B.8)

Using the upper bound of (B.8) we can form a convergent series.

2
(

1− Φ
(

(1 + ε)
√

2 log(tk)
))
≤ ce−((1+ε)

√
2 log(tk))

2/2

(1 + ε)
√

2 log(tk)

=
ce−(1+ε)

2 log(tk)

(1 + ε)
√

2 log(tk)

=
c

1 + ε

1√
2 log(tk)

t
−(1+ε)2
k =

c

(1 + ε)
√

2
c−(1+ε)

2 k−(1+ε)
2

log(ck)

This is a convergent series. Thus we have,

∞∑
k=1

P
(
|Γ(tk)| ≥ (1 + ε)

√
2 log(tk)

)
<∞

for any c ∈ R. By the Borel-Cantelli lemma we have B.7. Now we combine the previous
two into the following quantity in the form of

sup
tk≤y≤tk+1

|W (y + 1)−W (y)− (W (tk + 1)−W (tk))| .

By the triangle inequality this is bounded above

sup
tk≤y≤tk+1

|W (y + 1)−W (y)− (W (tk+1)−W (tk))|

≤ sup
tk≤y≤tk+1

|W (y + 1)−W (tk+1)|+ sup
tk≤y≤tk+1

|W (y)−W (tk)|
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By the properties of W (t)

sup
tk≤y≤tk+1

|W (y)−W (tk)| = sup
0≤x≤tk+1−tk

|W (x)|

= sup
0≤x≤c

|W (x)| D= c1/2 sup
0≤x≤1

|W (x)| ,

and therefore

P

(
c1/2 sup

tk≤y≤tk+1

|W (y)−W (tk)| ≥ (1 + ε)
√

2 log(tk+1)

)

= P

(
sup

0≤x≤1
|W (x)| ≥ (1 + ε)

√
2 log(tk+1)

)
≤ cδ

(1 + ε)
√

2 log(tk+1)
e

−(1−δ)(1+ε)22 log(tk+1)

2 .

Hence

∞∑
k=1

P

(
sup

0≤x≤1
|W (x)| ≥ (1 + ε)

√
2 log(tk+1)

)
≤
∞∑
k=1

cδ

(1 + ε)
√

2 log(tk+1)
e

−(1−δ)(1+ε)22 log(tk+1)

2 <∞

Combining this with statement 2 and applying Borel-Cantelli

P

(
lim sup
k→∞

c−1/2
|Γ(tk)− Γ(y)|√

2 log(tk+1)
≥ (1 + ε)

)
= 0.

Thus

lim sup
k→∞

c−1/2
|Γ(tk)− Γ(y)|√

2 log(tk+1)
≤ 1 a.s., lim sup

k→∞

|Γ(tk)− Γ(y)|√
2 log(tk+1)

≤ c1/2 a.s.

Combine this with the first statement to get that

lim sup
y→∞

|Γ(y)|√
2 log(y)

≤ 1 + c1/2 a.s.

For any c ∈ R so choose c = 1

lim sup
y→∞

|Γ(y)|√
2 log(y)

= 1 a.s.

�
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Appendix C. Reference for Generalized Autoregressive (GARCH) Models

It is often the case with financial and economic time series data that the volatility tends
to be autocorrelated. One model to capture this autocorrelation is the ARCH process
due to Engle (1982). To illustrate, let rt denote the daily return on an asset and assume
that E[rt] = 0. An ARCH(1) model for rt is

rt = σtzt

zt ∼ i.i.d. N(0, 1)

σ2t = ω + αr2t−1(C.1)

where ω > 0 and 0 < α1 < 1. It is important to note that rt is an uncorrelated process
based on this formulation. That is, if we let It = {rt, rt − 1, ...} be the conditioning
information set of returns up to time t we can take the conditional expectation

E[rt|It] = E[σtzt|It]
= σtE[zt|It]
= σtE[zt] = 0,(C.2)

provided that α < 1, rt is a mean zero, covariance stationary process with a finite vari-
ance. The unconditional variance of rt is given by

Var(rt) = E[r2t ] = E[E[z2t σ
2
t ]]

= E[σ2tE[z2t |It−1] = E[σ2t ]

Utilizing (C.1) and the stationarity of rt,E[σ2t ] may be expressed as

E[σ2t ] =
ω

1− α1
(C.3)

If rt is stationary and ergodic then again we have that the sample mean

r̄
D
= N

(
µ,

1

T

ω

1− α1

)
So the long-run variance is indeed

σ2rt =
ω

1− α1
.(C.4)

We obtain an ARCH(p) process if r2t follows an AR(p) process. And we can write

σ2t = ω +

p∑
i=1

αir
2
t−i.

Similar to C.4, utilizing again the structure of rt and r2t we have that

σ2rt =
ω

1−
p∑
i=1

αi

.(C.5)

62



The stationarity condition holds if

0 < α1 + ...+ αp < 1.(C.6)

The generalized ARCH or GARCH model is an alternative to the ARCH(p) model. It is
given by

σ2t = ω + α1r
2
t−1 + β1σ

2
t−1

where the ARCH term is r2t−1 and the GARCH term is σ2t−1. GARCH(p, q) models in-
clude p ARCH terms and q GARCH terms. The unconditional variance for a GARCH(1,1)
process is

Var(rt) = σ2rt =
ω

1− α1 − β1
.(C.7)

Similar to the ARCH process, this process is stationary if the following condition holds

0 < α1 + β1 < 1.(C.8)

For GARCH(p, q) we write σ2t as

σ2t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjσ
2
t−j .

Using a similar derivation as the previous models, we have that the unconditional vari-
ance of this process is

σ2rt =
ω

1−
p∑
i=1

αi −
q∑
j=1

βj

.

.

Proof. For GARCH(p, q), we have the following setup

rt = σtzt

zt ∼ i.i.d. N(0, 1)

σ2t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjσ
2
t−j

We want the unconditional variance, σ2 of the process rt. First recall that rt is a mean
zero, uncorrelated process

E[rt] = 0

Cov(ri, rj) = 0 for i 6= j.

We need to isolate r2t to one side, we rewrite the process as
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r2t − σ2t = σ2t (ε
2
t − 1)

q∑
j=1

βj(r
2
t−j − σ2t−j) =

q∑
j=1

βjσt−j(εt−j − 1)

where we let νt = σ2t (ε
2
t − 1) which has mean zero because ε2t is a χ2

(1) random variable.

We then subtract the above equations to get

r2t − σ2t −
q∑
j=1

βj(r
2
t−j − σ2t−j) = νt −

q∑
j=1

βjνt−j

r2t − σ2t −
q∑
j=1

βjr
2
t−j − βjσ2t−j = νt −

q∑
j=1

βjνt−j

r2t −
q∑
j=1

βjr
2
t−j − (σ2t −

q∑
j=1

βjσ
2
t−j) = νt −

q∑
j=1

βjνt−j

r2t −
q∑
j=1

βjr
2
t−j − (ω +

p∑
i=1

αir
2
t−i) = νt −

q∑
j=1

βjνt−j

r2t = ω +

q∑
j=1

βjr
2
t−j +

p∑
i=1

αir
2
t−i + νt −

q∑
j=1

βjνt−j .

Now note that E[r2t ]− Var(r2t ) = σ2 because rt has mean zero. So by taking expectation
we obtain

σ2 = E[r2t ] = ω +

q∑
j=1

βjE[r2t−j ] +

p∑
i=1

αiE[r2t−i] + E[νt] +

q∑
j=1

βjE[νt−j ]

= ω +

q∑
j=1

βjσ
2 +

p∑
i=1

αiσ
2.

Therefore,

σ2 =
ω

1−
p∑
i=1

αi −
q∑
j=1

βj

.

�
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