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1. - Introduction

From 2007 to 2009, the world economy experienced its worst decline since the Great Depression.
Millions of Americans lost their jobs and their homes as the subprime mortgage bubble burst, and
financial markets froze.

As a result of the economic collapse, the Dodd-Frank Act was enacted. This law requires the
Federal Reserve and all large bank holding companies (50 billion in assets or more) to conduct an
annual stress test which are then used to check whether a bank’s system could theoretically handle
a future economic shock. To prevent a repeat of taxpayer-financed bailouts, the Federal Reserve
requires banks to maintain capital cushions that would allow them not only to stay afloat, but also
to keep lending during periods of intense financial stress. It the results of these stress tests that
show whether banks have enough capital to survive another recession.

A key component of these stress tests is the estimation of probability of default and its migration
under hypothetical stress scenarios. This risk assessment involves studying customer relationships
and behaviors, often grouping similar customers together based on the amount and magnitude of
the risk they pose.

Using Fannie Mae single-family mortgage data, we attempt identify groups of customers with
various degrees of risk by clustering obligor data. We attempt several clustering methods on the
data, focusing mostly on K-means, and Gaussian Mixture Models. We compare these clustering
results to the clusters given by performing dimensionality reduction before the clustering. The
methods focused on in this paper produce clusterings that adequately group customers of various
degrees of risk and whose characteristics align with those expected given the default rates in each
cluster, allowing us to not only group together customers by the amount of risk they pose, but also
allowing us to understand the characteristics underlying high risk loans.

2. - Experiments

In this section we describe our experiments and the analysis we conducted. We first describe the
data set, including the variables used and how we derived certain variables, and the processing
conducted on it, such as filling missing values and normalizing columns. We also describe the
time analysis we conducted as well as a brief attempt at metric learning. Finally, we describe the
clustering and the dimensionality techniques used and the metrics used to evaluate the performance.
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2.1. - Data

2.1.1 - Data Source

The data set we explored contains single-family loan performance data from Fannie Mae. Each
row represents a single-family mortgage along with its corresponding acquisition and performance
attributes. The data is free, open to the public and can be obtained by creating an account on
Fannie Mae’s website and downloading the data quarter by quarter.

Originally, the acquisition data and loan performnce data were provided as two separate data
sets. The acquisition data contains loan characteristics at the time of origination while the per-
formance data describes loan performance over time. The first step in processing the data is the
combining of these two data sets. To do this, we use a SAS script provided by Fannie Mae, which
aggregated the performance data to the last point in time and joined this aggregated data to the
origination characteristics from the acquisition set. After aggregating, we end up with a 25 GB file.

Due to the size of the data, we narrow our focus on Utah. After filtering out loans from Utah,
we end up with a data set of 49 MB (498,578 observations).

2.1.2. - Loan Characteristics

The combined data set originally had 106 columns. Several of these columns describe costs and
losses that occur after a loan has defaulted and will not be helpful in identifying risky customers.
After examining each feature, and using our experience developing credit risk models, we decided
on 11 variables that we felt would be the most significant in determining risky customers. These
11 variables are listed in the table below.

Table 1: Fannie Mae loan performance and aquisition variables used

Variable Type Definition

orig rt Continuous Interest Rate at Originiation

oltv Continuous Ratio of loan amount to value of home at origination

num bo Continuous Number of Borrowers on Loan

dti Continuous Debt to income ratio

purpose Categorical Loan Purpose

cscore b Continuous Borrower Credit Score At Origination

fthb flg Categorical First Time Home Buyer Indicator

prop type Categorical Property Type

num unit Categorical Number of Units

occ stat Categorical Property Type

mi pct Continuous Primary Mortgage Insurance Percent

Note that we do not consider using data more granular than the state level because the Fair
Lending Act and Equal Credit Opportunity Act prohibit discrimination based on geography.

2.1.3. - Derived Variables

We also include some derived variables in our analysis. In addition to the variables described in
Table 2 below, we also used one-hot encoding to create dummy variables for the categorical variables
mentioned in Table 1 above. All in all, we used a total of 24 variables in our analysis. The Loan
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Status variable was only used in evaluating the clusterings. Therefore, 23 variables were used in
our experiments.

Table 2: Derived variables

Derived Variable Definition

coborrower ind Whether or not the borrower had a coborrower.
Derived from the Coborrower Credit Score at orig-
ination, it has a value of 1 if true, otherwise 0.

loan status Defines the current status of the loan: 1 - Current,
2 - Late (Payment > 30 days past due), 3 - Default
(Payment > 180 days past due).

2.1.4. - Handling Missing Values

Before beginning our analysis, we examined the data for any missing values. Of the variables
mentioned in Table 1, only three of them had missing values that we had to worry about. The
number of missing values and how we handled them are described in Table 3 below. Given that the
number of missing values for each variable is extremely small compared to the overall size of the
data set (≈ 1.7% missing for DTI), how we handled them should have little impact on our overall
results.

Table 3: Handling missing values

Variable No. Missing Description

num bo 68 Filled with the most common value, 2.0

cscore b 1372 We assumed a missing value indicated that the
borrower did not have nor provide a credit score.
Therefore, we assign missing values a credit
score of 300.

dti 8472 Filled with the mean DTI over the entire dataset

2.1.5. - Normalization

While most of the variables used in our experiments fall in the range of [0, 1], there are a couple,
specifically credit score and the number of borrowers, that do not. Therefore, we normalize our
variables to ensure that all variables fall within this range.

We understand that since some of the variables have different units, such as FICO and the num-
ber of borrowers, the euclidean distance might not necessarily be the most appropriate distance for
this data set. To address this, we attempted to use Multidimensional Scaling and the Mahalanobis
distance.

In the case of Mahalonobis distance, we had difficulty preparing sets of known points that are
similar and dissimilar to minimize and maximize this learned metric, given that determining which
customers are similar to each other is the key focus of this project. We ran into memory issues
with multidimensional scaling, even on subsets of 10,000 loans.

We applied distance metric learning to the data set and used the DML optimization algorithm
from class. We ran into similar memory problems when trying to find the matrix M such that we
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could us the Mahalanobis distance between points. To maximize the number of points and minimize
the running time, we ran the DML algorithm 15 times with random samples of size 2,000 from each
of the three classes. The data is normalized to prevent the final matrix from over compensating
for variables with large scales. Then the DML algorithm finds the optimal M, this is repeated and
the final matrix M is found by taking the mean of all 15 matrices. Below we show the points that
were randomly chosen to compute the distance over.

Table 4: Loans chosen to compare distance

Point No. orig dte orig rt orig amt orig trm oltv ocltv num bo dti cscore b mi pct default st

1 07/01/2002 6.5 126000 360 95 95 2 33 720 30 3

2 03/01/2003 6 208000 360 95 95 2 33 608 25 3

3 03/01/2002 7.25 100000 360 77 77 1 35 641 0 2

4 11/01/2003 5.875 315000 360 73 73 1 54 768 0 2

5 10/01/2002 6.125 132000 360 80 80 2 19 758 0 1

6 02/01/2003 5.75 205000 360 80 80 2 25 756 0 1

The DML optimization algorithm results in a 9 by 9 matrix M that is used to find the distance
between loans with nine variables that were chosen from the original eleven. The resulting distances
are shown below. For the sake of simplicity we only show a few of the computed distances.

Table 5: Mahalanobis Distance between loans

Point No. Tuple Distance ·100

(1,2) 0.0600623

(1,5) 0.002828574

(2,3) 0.01296889

(3,4) 0.1492825

(3,5) 0.04487866

(5,6) 0.02504693

From these computed distances, we indeed see that the most similar loans are number 1 and
5. Which can easily be seen by looking at the rate, amount, credit score, etc. However these
distances don’t seem to tell us anything about the resulting default status which is to be expected
because similarity at origination doesn’t imply similarity in eventual late or default status. If
further research was to be conducted in this area, we would increase our sample size of each loan
status and reevaluate the variables used in order to find the best set of variables for calculating
loan similarity. Time and computational resource limits prevented us from using more variables or
more loans in the sample.

For the above reasons, and provided that scaling to a range of [0, 1] is an extremely common and
accepted practice in credit risk modeling, we are comfortable proceeding using the data normalized
to the range of [0, 1].

2.2 - Time Analysis

The performance data provided by Fannie Mae tracks the performance of loans over time. The
fact that the time period provided includes the financial crisis implies that there might be some
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difference in mortgage origination characteristics throughout time that can better separate groups
or clusters. Our initial idea was to cluster loans in different sets of years to see what characteristics
change and cause separation. We attempted several methods to evaluate the significance of the
importance of this time component inclusing Singular Value Decomposition, feature importance,
and variable correlation over time to see if there would be merit to including this in our clustering.
Most of these experiments were exploratory in nature and didn’t contribute to our conclusions.
The details for these can be found in Appendix B.

The most reliable method chosen for this time component was the correlation matrices. We
investigated the correlation matrices of a subset of variables contained in the aggregated data set
over nine different periods in time. Three are shown below and the rest are located in Appendix
B.2. For some variables, such as original LTV and DTI, the correlation as increased over the years
covered in the data set. However, overall the matrices look fairly similar between time periods. We
see this as evidence that behavior remains consistent over time and it is thus appropriate to cluster
over the entire data set.

Figure 1: Variable correlation over time

2.3 - Clustering + PCA

2.3.1. - Clustering

As mentioned earlier, a key component of stress testing is the measurement of probability of default,
which involves studying customer relationships and behaviors. This is often done grouping similar
customers together based on the amount and magnitude of the risk they pose. Naturally, we decided
to apply various clustering strategies on the data in order to find groups of similar customers.
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We attempt several types of clustering, namely agglomerative clustering, spectral clustering, K-
means clusters, and gaussian mixture models. Agglomerative and spectral clustering had memory
issues, so we did not further pursue these methodologies. To determine the optimal number of
clusters for K-means clustering, we calculated the sum of the squared distances to the closest center
for various numbers of clusters and chose the “elbow” point. For the gaussian mixture model, we
calculated the Bayesian Information Criterion (BIC) for the given clustering for various numbers
of clusters. The gaussian mixture model also has a parameter describing the type of covariance
parameters to use. Therefore, we also consider the four possible options available in the SkLearn
library. These options are described in more detail in section 3.

2.3.2. - PCA

Dimensionality Reduction was also performed using Principal Component Analysis. While the
number of dimensions in the original data set is not high (we only use 23 variables), we hope that
we might be able to remove some of the noise by clustering on the first few components and that
we will be able to better visualize the clusters. We specifically look at the first three components
and the features that have the most influence over them. Also, as we will show below, clusters are
more visible if viewed from the basis formed by the first three principal components. Therefore,
we also perform K-means clustering and fit a gaussian mixture model on the first few components,
hoping to improve the quality of the clusters.

We select the optimal number of clusters as before, except we have the added parameter of
how many principal components to use. Therefore, for K-means, we examine the elbow plot for
K-means performed using a various number of clusters and components. For the gaussian mixture
model, we perform the selection similarly, except we use BIC.

2.3.3. - Evaluating Quality of Clusters

To evaluate the quality of the clusters, we primarily use two methods. For the first method, we use
silhouette analysis. Using the optimal number of clusters we found earlier, we calculate a silhouette
score, calculated as the difference of the mean nearest-cluster distance and the mean intra-cluster
distance divided by the maximum of the two. However, due to the large sample size, we have
to use sub-samples of the data to calculate the score. Therefore, we take a sub-sample of 10,000
observations and calculate the silhouette score. After doing this 1,000 times, we use the mean as
the final silhouette score.

The silhouette score can take on values in the range [−1, 1]. Negative values generally indicate
that a sample has been assigned to an incorrect cluster, while a higher score generally indicates
dense, well separated clusters. Scores around zero typically indicate overlapping clusters.

The second method used to evaluate the quality of the clusters involves examining the charac-
teristics of the customers in each cluster, especially the mean default rate of the customers in each
cluster. A good clustering will provide a good separation of customers with low default rates and
high default rates.

3 - Results and Discussion

3.1 - PCA

We ran Principal Component Analysis on the data set and examined the first two and three principal
components. The plot below is a scatter plot of the first two principal components. As we can see,
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some clear clustering can be seen. We also examined the attributes that have the most influence
over the first three principal components. Interestingly, the first time home buyer indicators and
the original LTV had the most influence over the first principal component, while the occupancy
status indicators had the most influence over the second principal component.

Figure 2: Initial PCA results

However, the first few components do not seem to explain a large portion of the variance within
the data set. As seen below, the first five components only explain about 40% of the variance and
we need 14 components to explain about 90%. Given that the data set only has 23 variables, we
do not expect principal components to improve the clustering results much if at all.

Figure 3: Explained Variance

3.2 - Clustering Results

We performed K-means clustering before and after Principal Component Analysis. A key part of
K-means is determining an appropriate number of clusters to use. We utilized elbow plots, where
the sum of the squared distance to the closest center is plotted against the number of clusters. The
number of clusters at the ”elbow” is generally an appropriate number of clusters to use. However,
when K-means is ran after performing principle component analysis, we also have to determine an
appropriate number of principle components to cluster on. To accomplish this, we again utilize
elbow plots, making a plot for n = 3, ..., 7 principal components.

We can see in Figure 4 below, that after around 10 clusters adding additional clusters does
not drastically improve the sum of squared distances. Therefore, we choose 10 clusters as the
optimal number of clusters. Also, when conducting PCA beforehand, we see that the more principle
components we include in the K-means clustering, the larger the sum of squared distances generally
is. For this reason, we choose to use three principle components in our clustering. Also after about
15 clusters, we see that the addition of clusters does not improve the sum of squared distances very
much. Therefore, we choose to use 15 clusters.
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Figure 4: Elbow Plots

We perform a similar analysis with the gaussian mixture model. However, when choosing an
appropriate number of clusters to use, we calculate the BIC for a particular clustering. We also
need to consider the type of covariance parameters to use. Each component can have its own
general covariance matrix (full), all components share the same general covariance matrix (tied),
each component has its own diagonal covariance matrix (diag), or each component has its own
single variance (spherical). The covariance parameter and the number of clusters that have the
lowest BIC is considered an appropriate number of clusters to use. Also, when using GMM after
performing PCA, we also have to determine an appropriate number of principle components to
cluster on. We perform the same process as before, but using only the “Full” covariance type due
to computational limitations, and repeat the processes for a various number of principal compoents.

If Figure 5, we can see that using the “Full” covarience type and 38 clusters gives the lowest BIC
when performing only GMM. Interestingly, we see that BIC tends to keep decreasing as we increase
the number of clusters. However, we did not explore more than 40 clusters due to computational
constraints and to maintain some degree of interpretability. Also seen in figure 5, we see that the
BIC also decreases with the number of principal components we use. Thus, for the case when PCA
is performed before performing GMM, we use eight principal components with 40 clusters.

Figure 5: Add title

Below in Figure 6-7, we show the results of clustering with K-means and GMM after PCA. We
only show clustering results in conjunction with PCA because it is easier to visualize. Also, plots in
both 2-dimensions and 3-dimensions are shown because certain clusters are easier to see depending
on the perspective. We can see that while some of the clusters are probably assigned appropriately,
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there are some that might be overlapping with others. This fact is also supported by our silhouette
analysis below.

Figure 6: Clustering with K-means and PCA

Figure 7: Clustering with GMM and PCA

3.3. - Evaluation

The first method used to evaluate the quality of the clusterings was silhouette analysis. Using the
optimal number of clusters we found earlier, we calculated a silhouette score, calculated as the
difference of the mean nearest-cluster distance and the mean intra-cluster distance divided by the
maximum of the two. However, due to the large sample size, we have to use sub-samples of the
data to calculate the score. Therefore, we take a sub-sample of 10,000 observations and calculate
the silhouette score. After doing this 1,000 times, we use the mean as the final silhouette score.

Table 6 below shows the silhouette score for each of the four clustering methods. The gaussian
mixture model had the highest score, followed closely by K-means clustering. These results are
not suprising given that 14 components are needed in order to explain 90% of the variance in the
dataset. Also, recall that K-means only uses 10 clusters while the Gaussian Mixture Model used
38. Given that the silhouette scores of the two methods are so similar, it seems that the added
complexity and granularity of the GMM does not seem to drastically improve the performance
when measured by a silhouette score.

Recall that the silhouette score is bounded between -1 for incorrect clustering and +1 for highly
dense clustering. The higher scores for the k-means and GMM without PCA indicates that these
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two methods produce clusters that are more dense and well separated than the other two methods.
While the PCA methods are both positive, they are closer to zero, indicating that their clusters
might overlap more than the other methods.

Table 6: Silhouette Analysis

Method Silhouette Score

K-means 0.4181
Gaussian Mixture Model 0.4350
PCA + K-means 0.3585
PCA + Gaussian Mixture Model 0.2726

The second method used to evaluate the quality of a clustering involved examining how well the
clusterings grouped low risk customers separately from high risk customers. In Table 7, we show
the portion of the customers that are “Late” and the portion of customers that are in Default.
Interestingly, while K-means clustering had the best silhouette score, it does not seem to separate
low risk customers from high risk customers as well as the other methods, with the lowest default
rate at 1.10% and the highest risk cluster of customers at 3.17%. The GMM performed slightly
better, with the lowest risk cluster at 0.73% and the highest risk cluster at 4.7%.

Both k-means and GMM performed better, however, when PCA was performed first. PCA +
K-means had a low risk cluster with a default rate of 0.16% and a high risk cluster at 5.32%, while
PCA + GMM performed the best, with the low risk cluster at 0.007% and the high risk cluster at
6.28%.

10



Table 7: Portion of Loans that are Late or in Default by Cluster

K-means GMM PCA + K-means PCA + GMM

Cluster No. Avg. Late Ind. Avg. Default Ind. Avg. Late Ind. Avg. Default Ind. Avg. Late Ind. Avg. Default Ind. Avg. Late Ind. Avg. Default Ind.

0 0.068811 0.014936 0.078304 0.012987 0.038592 0.001555 0.090208 0.016604
1 0.084346 0.016784 0.072427 0.009739 0.112711 0.032576 0.045284 0.007005
2 0.105582 0.024678 0.121173 0.031240 0.051408 0.009602 0.077299 0.017424
3 0.080298 0.013947 0.108212 0.032310 0.090331 0.010418 0.106736 0.029880
4 0.075333 0.013415 0.142857 0.030612 0.072382 0.014346 0.127549 0.029434
5 0.112662 0.018421 0.113106 0.021544 0.092345 0.024121 0.054214 0.012940
6 0.068280 0.011044 0.083119 0.016647 0.085143 0.013462 0.079519 0.008879
7 0.101964 0.022232 0.054342 0.011391 0.082110 0.019624 0.103539 0.019864
8 0.06149 0.010990 0.122742 0.025753 0.135987 0.027954 0.058770 0.012167
9 0.118260 0.031704 0.077726 0.008276 0.057396 0.009066 0.127672 0.047605
10 . . 0.076710 0.012440 0.081726 0.010277 0.077246 0.011195
11 . . 0.111066 0.018913 0.046437 0.005117 0.088491 0.013841
12 . . 0.073309 0.015931 0.108988 0.020643 0.121102 0.029029
13 . . 0.087673 0.021213 0.171141 0.053211 0.048119 0.005837
14 . . 0.081288 0.021758 0.090130 0.020671 0.085597 0.019417
15 . . 0.114014 0.019002 . . 0.092258 0.023064
16 . . 0.061339 0.013693 . . 0.061325 0.007953
17 . . 0.085027 0.028915 . . 0.123563 0.013471
18 . . 0.094005 0.014688 . . 0.059467 0.012928
19 . . 0.108125 0.017308 . . 0.097113 0.015748
20 . . 0.147899 0.026891 . . 0.167732 0.028754
21 . . 0.100781 0.018630 . . 0.101549 0.015018
22 . . 0.105863 0.029625 . . 0.076644 0.012236
23 . . 0.079264 0.012682 . . 0.096386 0.015014
24 . . 0.070529 0.011083 . . 0.068636 0.018788
25 . . 0.052092 0.007808 . . 0.125769 0.024036
26 . . 0.086829 0.019051 . . 0.110986 0.020282
27 . . 0.098112 0.036212 . . 0.077000 0.013224
28 . . 0.110485 0.015264 . . 0.102001 0.033919
29 . . 0.046223 0.007704 . . 0.130223 0.062797
30 . . 0.099792 0.018433 . . 0.072260 0.009662
31 . . 0.111664 0.012058 . . 0.099554 0.018733
32 . . 0.066806 0.011830 . . 0.091202 0.016631
33 . . 0.050405 0.007261 . . 0.086415 0.019544
34 . . 0.066579 0.010870 . . 0.119863 0.027397
35 . . 0.115754 0.025786 . . 0.036856 0.000686
36 . . 0.127584 0.047598 . . 0.084283 0.018556
37 . . 0.097720 0.012622 . . 0.106290 0.019735
38 . . . . . . 0.068388 0.014556
39 . . . . . . 0.106264 0.029941

4. - Discussion

All four clustering methods seem to perform well depending on the evaluation technique used. The
silhouette score indicates that the k-means and Gaussian Mixture Models on their own seem to
produced clustering that are reasonably dense and well separated while using PCA beforehand
produces clusters that tend to overlap. This overlapping can especially be seen in the Figures 6-7.
However, performing PCA beforehand seems to produce clusterings that do a more reasonable job
of separating high risk customers from the low risk customers. Given that one purpose of credit
risk management is to identify risky customers and behaviors, the results seem to suggest that one
should lean towards performing PCA before clustering.

Table 8 below shows the mean value of each customer characteristic for the cluster that had the
lowest average default rate (left column) and the cluster that had the highest default rate (right
column) for each of the four methods. We can see that the cluster with the lower default rate
generally has better credit scores, lower LTV, lower DTI, and lower interest rates than the cluster
with the higher default rate, as expected. All four methods show these general characteristics
that follow intuition. However, PCA used in conjuction with GMM produces clusters that reflect
intuition at a larger magnitude than the others. Regardless, it appears that these methods can
be used to group similar customers and the clusters’ characteristics can be examined and used to
inform capital allocation decisions and other credit risk forecasting models.
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Table 8: Customer characteristics by cluster
K-means GMM PCA + GMM PCA + K-means

Variable Cluster 8 Cluster 9 Cluster 33 Cluster 36 Cluster 35 Cluster 29 Cluster 0 Cluster 13

oltv 70.781969 80.240792 66.155543 88.874891 66.191302 70.380879 44.252303 86.204060
num bo 1.563844 1.161483 2.006702 1.209243 1.288732 1.152895 2.000000 1.795109
dti 33.510209 35.626107 30.988438 36.053785 31.687954 34.887106 26.517372 36.718518
cscore b 752.050924 743.032403 764.034906 722.689447 748.751988 739.663865 784.883846 710.187085
num unit 1.364076 1.009042 1.000140 1.000000 1.007668 1.543415 1.000000 1.000000
orig rt 5.431242 5.365059 4.304174 5.466964 4.944771 5.625183 4.650456 5.881140
mi pct 1.429775 10.585819 0.000000 21.291121 1.115600 1.332242 0.000000 16.581197
cosign ind 0.497234 0.000000 1.000000 0.000000 0.057062 0.086274 1.000000 0.621439
late ind 0.112662 0.100496 0.050405 0.127584 0.084729 0.141277 0.036856 0.130223
default ind 0.018421 0.022433 0.007261 0.047598 0.013590 0.028428 0.000686 0.062797
purpose C 0.260499 0.000000 0.000000 0.000000 0.360659 0.300538 1.000000 0.956553
purpose P 0.418804 0.999549 0.000000 0.000000 0.028304 0.354675 0.000000 0.043447
purpose R 0.320697 0.000000 1.000000 1.000000 0.610818 0.344787 0.000000 0.000000
purpose U 0.000000 0.000451 0.000000 0.000000 0.000218 0.000000 0.000000 0.000000
fthb flg N 0.997674 0.999417 1.000000 0.999927 1.000000 0.999567 1.000000 1.000000
fthb flg U 0.002326 0.000583 0.000000 0.000073 0.000000 0.000433 0.000000 0.000000
fthb flg Y 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
prop typ CO 0.133566 0.104871 0.000000 0.000000 0.000520 0.031766 0.000000 0.000000
prop typ CP 0.000031 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
prop typ MH 0.000943 0.006284 0.062971 0.000073 0.004144 0.000865 0.000000 0.000000
prop typ PU 0.019332 0.000000 0.937029 0.000000 0.000453 0.004511 0.000000 0.000000
prop typ SF 0.846127 0.888845 0.000000 0.999927 0.994883 0.962858 1.000000 1.000000
occ stat I 1.000000 0.000000 0.000000 0.000000 0.000000 0.920771 0.000000 0.000000
occ stat P 0.000000 0.938165 1.000000 1.000000 0.999966 0.008158 1.000000 1.000000
occ stat S 0.000000 0.061835 0.000000 0.000000 0.000034 0.071071 0.000000 0.000000

5. - Conclusion

We applied clustering and dimensionality techniques to Fannie Mae mortgage performance data
in an attempt to explore whether these tools can be used to identify high risk customers. K-
means and Gaussian Mixture Models produce clusters that are reasonable well separated and
do a descent job at grouping together customers with similar risk profiles. However, performing
PCA before clustering, while producing overlapping clusters, outperforms k-means and Gaussian
Mixture Models on their own when grouping together customers based on risk. All these methods
do a reasonable job identifying customers with higher risk and could provide important insight
when developing models used to forecast risk in stress testing and when making capital allocation
decisions.
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Appendices

A Contributions

Below is a table describing the contributions each team member made to the project. We would
like to point out that we describe more analysis here than appears in the final report. We also
like to point out that the contributions listed are not as clear cut as described and that each team
member was very much involved in most aspects of the project.

Table 9: Team contributions

Team member Contribution

Jonathan Bown

• Gather and aggregated data.

• Time and correlation analysis.

• Singular Value Decomposition

• Metric Learning

• Linear Discriment Analysis

Christopher Harker

• Processing Data, including filling missing
values and normalization.

• K-means clustering

• Principal Component Analysis

• K-means + PCA

• Silhouette analysis

Travis Tiner

• K-means clustering

• Gaussian Mixture Models

• PCA + Gaussian Mixture Models

B Time Analysis

B.1 Composition over time

Below we show the composition of loans according to the derived loan status variable described in
table 2. Note the imbalance of those that are current to those that are late and in default. However,
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these imbalances remain fairly consistent throughout the time span of this data set.

Figure 8: Loan status over time

B.2 Variable Correlation

We include all the correlation matrices found among the two year subsets below. Note that the
year in the title corresponds to the loans included from the two years prior to the start of that year.
For example, Correlation Matrix 2002 is calculating the correlation among variables for the years
before 2002.
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Figure 9: Feature correlation
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B.3 SVD

Our first experiment was to take the set of explanatory variables and take the singular value
decomposition for each two year group. To remove any influence from the number of loans in each
group of years we randomly sampled 10,000 loans and then normalize the values of each variable.
The resulting matrix is then run through the singular value decomposition and the singular values
are recorded. What we can see in the plots below is that there is some variation over time in the
singular value, but the scale of the singular value remains fairly consistent. We weren’t surprised
that the Original Rate variable is the most influential in creating a best subspace for dimensionality
reduction. The rate given on a loan contains a lot of information that is explained by credit score,
loan to value, and debt to income just to name a few.

For the SVD it is well known that this decomposition is somewhat unstable. A small change
in the data can possibly lead to fairly significant changes in the subspace that is generated or the
singular values themselves. This is ultimately why we decided to choose other methods of evaluating
the importance of the time component.
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Figure 10: Singular values over time

B.4 Feature Importance

To further investigate if there are variables that change importance over time we take two year
subsets and fit a random forest with 100 decision trees. This allows us to get a feature importance
score for each variable. We then plot the feature importance score of a certain variable across
these nine groups. The plots below indeed show that there is some clear variation over time. As
expected the features vary in importance for these types of classification but the changes and overall
importance of each variable did not seem to be influenced by the difference in time of origination.

Notice below that the origination characteristics before the rate is set such as credit score,
debt to income, and original loan to value have become more influential in predicting loan status
than the rate, amount, and percent mortgage insurance. This is one indication that origination
characteristics outside the banks control have become more understood in the risk assessment
process.
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Figure 11: Feature importance over time

B.5 Linear Discriminant Analysis

Linear Discriminate Analysis was considered as a method to incorporate into our overall goal of
separating loans that default and those that don’t. However, as can be seen by the histograms
below, the assumptions of normality required for this method are violated. Variables such as credit
score, loan to value, last rate, and original amount don’t have a distribution shape that would
suggest normality. Despite these violations, LDA was attempted to build some sort of boundary
between defaults and non defaults. As can be seen in Figure 8 this is already tough to do because
of the low proportion of defaults. Results weren’t promising and much wasn’t done further with
this method in order to prioritize other techniques.
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Figure 12: Variable histograms
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